Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100302    DOI: 10.1088/1674-1056/ad6a3d
GENERAL Prev   Next  

Reference-frame-independent quantum key distribution with two-way classical communication

Chun Zhou(周淳), Hai-Tao Wang(汪海涛)†, Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Zang Zhou(周砚扬), Xiang Wang(汪翔)‡, Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏)
Henan Key Laboratory of Quantum Information and Cryptography, SSF IEU, Zhengzhou 450001, China
Abstract  The data post-processing scheme based on two-way classical communication (TWCC) can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution (QKD) system. In this study, we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution (RFI-QKD), and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases. Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48% to 16.75%. At the same time, the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered. We conclude that RFI-QKD with the TWCC method is of practical interest.
Keywords:  quantum key distribution      reference-frame-independent      two-way classical communication  
Received:  22 May 2024      Revised:  19 July 2024      Accepted manuscript online:  02 August 2024
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: The project was supported by the National Natural Science Foundation of China (Grant Nos. 61505261, 62101597, 61605248, and 61675235), the National Key Research and Development Program of China (Grant No. 2020YFA0309702), the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation of Henan Province (Grant Nos. 202300410534 and 202300410532), and the Anhui Initiative in Quantum Information Technologies.
Corresponding Authors:  Hai-Tao Wang, Xiang Wang     E-mail:  wht@qiclab.cn;dixonwx@163.com

Cite this article: 

Chun Zhou(周淳), Hai-Tao Wang(汪海涛), Yi-Fei Lu(陆宜飞), Xiao-Lei Jiang(姜晓磊), Yan-Mei Zhao(赵燕美), Yu Zhou(周雨), Yang Wang(汪洋), Jia-Ji Li(李家骥), Yan-Zang Zhou(周砚扬), Xiang Wang(汪翔), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏) Reference-frame-independent quantum key distribution with two-way classical communication 2024 Chin. Phys. B 33 100302

[1] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[2] Xu F H, Ma X F, Zhang Q, Lo H K and Pan J W 2020 Rev. Mod. Phys. 92 025002
[3] Bennett C H and Brassard G 1984 Quantum cryptography: Public key distribution and coin tossing (New York: IEEE) p. 175
[4] Boaron A, Boso G, Rusca D, et al. 2018 Phys. Rev. Lett. 121 190502
[5] Comandar L, Lucamarini M, Fröhlich B, et al. 2016 Nat. Photon. 10 312
[6] Wang S, Yin Z Q, He D Y, et al. 2022 Nat. Photon. 16 154
[7] Fan-Yuan G J, Lu F Y, Wang S, et al. 2022 Optica 9 812
[8] Han Y X, Sun Z Q, Dou T Q, Wang J P, Li Z H, Huang Y Q, Li P Y and Ma H Q 2022 Chin. Phys. Lett. 39 070301
[9] Zhang C X, Wu D, Cui P W, Ma J C, Wang Y and An J M 2023 Chin. Phys. B 32 124207
[10] Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304
[11] Liang W Y, Wang S, Li H W, et al. 2014 Sci. Rep. 4 3617
[12] Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319
[13] Wang F M, Zhang P, Wang X L and Li F L 2016 Phys. Rev. A 94 062330
[14] Liu H W, Wang J P, Ma H Q and Sun S H 2019 Phys. Rev. Appl 12 034039
[15] Zhang C M, Wang W B, Li H W and Wang Q 2019 Opt. Lett. 44 1226
[16] Sun S H 2021 Phys. Rev. A 104 022423
[17] Zhu J R, Wang R and Zhang C M 2022 Opt. Lett. 47 4219
[18] Wang J P, Liu H W, Ma H Q and Sun S H 2019 Phys. Rev. A 99 032309
[19] Bae J, Acín, A 2007 Phys. Rev. A 75 012334
[20] Gottesman D and Lo H K 2003 IEEE Trans. Inf. Theory 49 457
[21] Li H W, Zhang C M, Jiang M S and Cai Q Y 2022 Commun. Phys. 5 53
[22] Jiang X L, Wang Y, Li J J, et al. 2023 Opt. Express 31 9196
[23] Liu X, Luo D, Zhang Z R and Wei K J 2023 Phys. Rev. A 107 062613
[24] Wang R Q, Zhang C M, Yin Z Q, et al. 2023 New J. Phys. 24 073049
[25] Chau H F 2002 Phys. Rev. A 66 060302
[26] Ma X F, Fung C H F, Dupuis F, Chen K, Tamaki K and Lo H K 2006 Phys. Rev. A 74 032330
[27] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[28] Xu H, Yu Z W, Jiang C, Hu X L and Wang X B 2020 Phys. Rev. A 101 042330
[29] Ma X F, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[30] Chernoff H 1952 Ann. Math. Stat. 23 493
[31] Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333
[32] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[33] Xu F H, Xu H and Lo H K 2014 Phys. Rev. A 89 052333
[1] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(8): 080306.
[2] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[3] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[4] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[5] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[6] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[7] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[8] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[9] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[10] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[11] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[12] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[13] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[14] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[15] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
No Suggested Reading articles found!