Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 108104    DOI: 10.1088/1674-1056/ad7672
RAPID COMMUNICATION Prev   Next  

Structural color of metallic glass through picosecond laser

Yue'e Zhang(张月娥)1,2, Xing Tong(童星)2,†, Yuqiang Yan(闫玉强)2, Shuo Cao(曹硕)1, Hai-Bo Ke(柯海波)2,‡, and Wei-Hua Wang(汪卫华)1,2,3
1 College of Physics, Liaoning University, Shenyang 110036, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The alteration in surface color of metallic glasses (MGs) holds great significance in the context of microstructure design and commercial utility. It is essential to accurately describe the structures that are formed during the laser and color separation processes in order to develop practical laser coloring applications. Due to the high oxidation sensitivity of La-based metallic glass, it can broaden the color range but make it more complex. Structure coloring by laser processing on the surface of La-based metallic glass can be conducted after thermoplastic forming. It is particularly important to clarify the role of structure and composition in the surface coloring process. The aim is to study the relationship between amorphous surface structural color, surface geometry, and oxide formation by laser processing in metallic glasses. The findings revealed that the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm$^{2}$. In contrast, the surface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm$^{2}$. Consequently, this study provides a novel concept for the fundamental investigation of laser coloring and establishes a new avenue for practical application.
Keywords:  metallic glass      picosecond laser      periodic structure      oxides  
Received:  24 July 2024      Revised:  27 August 2024      Accepted manuscript online:  03 September 2024
PACS:  81.05.Kf (Glasses (including metallic glasses))  
  81.40.Tv (Optical and dielectric properties related to treatment conditions)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
  81.65.Mq (Oxidation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071222 and 52471180), Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2019B030302010), Guangdong Basic and Applied Basic Research, China (Grant No. 2020B1515130007), the National Key Research and Development Program of China (Grant No. 2021YFA0716302), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000).
Corresponding Authors:  Xing Tong, Hai-Bo Ke     E-mail:  tongxing@sslab.org.cn;kehaibo@sslab.org.cn

Cite this article: 

Yue'e Zhang(张月娥), Xing Tong(童星), Yuqiang Yan(闫玉强), Shuo Cao(曹硕), Hai-Bo Ke(柯海波), and Wei-Hua Wang(汪卫华) Structural color of metallic glass through picosecond laser 2024 Chin. Phys. B 33 108104

[1] Yu H, Zhao L N, Bo M S, Xu D S and Jia L C 2023 Rare Met. 42 844
[2] Liu Y N, Ding Y, Yang L J, Sun R L, Zhang T G and Yang X J 2021 J. Manuf. Processes. 66 341
[3] Antończak A, Stępak B, KoziołP and Abramski K 2013 Appl. Phys. A 115 1003
[4] Qi S, Jian Z Z, Xian K M, Jia N Y, Zhao H G, Ming Z and Shun G 2022 Rare Met. 41 1022
[5] Hedayati K and Elbahri M 2016 Plasmonics 12 1463
[6] Gu Y H, Zhang L, Yang J K, Yeo S P and Qiu C W 2015 Nanoscale 7 6409
[7] Kristensen A, Yang J, Bozhevolnyi S, Link S, Nordlander P, Halas N and Mortensen N 2017 Nat. Rev. Mater. 2 16088
[8] Ma Y Q, Shao J H, Zhang Y F, Lu B R, Zhang S C, Sun Y, Qu X P and Chen Y F 2015 Chin. Phys. B 24 080702
[9] Camilo F, Kirner S, Krüger J and Bonse J 2020 J. Laser Appl. 32 022063
[10] Florian C, Skoulas E, Puerto D, Mimidis A, Stratakis E, Solis J and Siegel J 2018 ACS Appl. Mater. Interfaces 10 36564
[11] Lutey A, Gemini L, Romoli L, Lazzini G, Fuso F, Faucon M and Kling R 2018 Sci. Rep. 8 10112
[12] Martínez-Calderon M, Manso-Silván M, Rodríguez A, Gómez-Aranzadi M, García-Ruiz J, Olaizola S and Martín-Palma R 2016 Sci. Rep. 6 36296
[13] McDaniel C, Gladkovskaya O, Flanagan A and Rochev Y 2015 RSC Adv. 5 42548
[14] Stratakisa E, Bonsec J, Heitzd J, Siegele J, Tsibidisa G and Skoulasa E 2020 Mat. Sci. Eng. R 141 100562
[15] Zhi H F, Xin Y S, Peng B H, Hang F, Hui C D, Shun G, Ru S and Jian H L 2020 Rare Met. 39 270
[16] Sun X D, Hui W Y, Cheng Y Z, Jing Z, Shi Y and Pan L J 2023 Rare Met. 42 3304
[17] Guay J, Cala L, Cote G, Charron M, Poitras D, Ramunno L, Berini P and Weck A 2017 Nat. Commun. 8 16095
[18] Shi X Y, Huang Z J, Laakso M, Niklaus F, Sliz R, Fabritius T, Somani M, Nyo T, Wang X, Zhang M, Wang G, Kömi J, Huttula M and Cao W 2019 Appl. Surf. Sci. 484 655
[19] Ahmed M F, Kim Y, Lee M and Jun M 2011 Appl. Surf. Sci. 257 7771
[20] Yao J W, Zhang C Y, Liu H Y, Dai Q F, Wu L J, Lan S, Gopal A, Trofimov V and Lysak T 2012 Appl. Surf. Sci. 258 7625
[21] Li G Q, Li W, Hu Y L, Zhang C C, Li X H, Chu J and Huang W H 2014 Appl. Surf. Sci. 316 451
[22] Ahsan M and Lee M 2013 Optik 124 3631
[23] Höhm S, Herzlieb M, Rosenfeld A, Krüger J and Bonse J 2015 Appl. Surf. Sci. 336 39
[24] Wang C, Lin X, Schäfer C, Hirsemann S and Ge J P 2020 Adv. Funct. Mater. 31 2008601
[25] Zhou L W, Yang L L, Liu Y, Xu Z, Yin J, Ge D T and Jiang X S 2020 Adv. Opt. Mater. 8 2000234
[26] Long J Y, Fan P X, Zhong M L, Zhang H J, Xie Y D and Lin C 2014 Appl. Surf. Sci. 311 461
[27] Palmieri F, Ledesma R, Dennie J, Krame T, Lin Y, Hopkins J, Wohl C and Connell J 2019 Compos. Part B-Eng. 175 107155
[28] Huang Y D, Zhang C Y, Zhang C C, Li G, Chen Q and Song C 2022 J. Manuf. Processes 76 304
[29] Pauna H, Shi X Y, Huttula M, Kokkonen E, Li T, Luo Y, Lappalainen J, Zhang M and Cao W 2017 Appl. Phys. Lett. 111 103901
[30] Xiong Y, He T T, Lu Y, Bao H S, Li Y, Ren F Z, Cao W and Volinsky A 2018 J. Iron. Steel Res. Int. 25 469
[31] Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E and Shan Z W 2023 Nat. Commun. 14 3670
[32] Ashby M and Greer A 2006 Scr. Mater. 54 321
[33] Chen F C, Dai F P, Yang X Y, Ruan Y and Wei B B 2020 Chin. Phys. B 29 066401
[34] Bu Y, Bai X M, Lyu F C, Liu G, Wu G, Pan L L, Cheng L Z, Ho J and Lu J 2020 Adv. Opt. Mater. 8 1901626
[35] Yang C, Zhang C nand Liu L 2017 J. Alloys Compd. 728 289
[36] Na J, Han K, Garrett G, Launey M, Demetriou M and Johnson W 2019 Sci. Rep. 9 3269
[37] Wang J Z, Zhang P L, Shen L, Yu Z S, Shi H C and Tian Y T 2021 J. Manuf. Processes 69 613
[38] Hong J, Qian Y F, L Zhang, Huang H, Jiang M Q and Yan J W 2021 Surf. Coat. Tech. 424 127657
[39] Qian Y F, Huang H, Jiang M Q and Yan J W 2021 Appl. Surf. Sci. 577 151976
[40] Shaw M and Fairchild M 2002 Color Res. Appl. 27 316
[41] Glonek G and McCullagh P 1995 J. R. Stat. Soc. 57 533
[42] Ciapurin I, Drachenberg D, Smirnov V, Venus G and Glebov L 2012 Opt. Eng. 51 058001
[43] Wang K X, Feng S M, Xu H T, Tian J D and Pei J 2012 Acta Opt. Sin. 32 324001
[44] Yao S S, Wang Y Q, Liang Y Z, Yu H L, Majeed A, Shen X Q, Li T B and Qin S B 2021 Ceram. Int. 47 27012
[45] Zhao Z H, Liu J L, Qin M, Kou K C, Wu G L and Wu H J 2020 J. Nanosci. Nanotechnol. 20 3140
[46] Cañón J and Teplyakov A 2021 Surf. Interface Anal. 53 475
[47] Prajapati J, Das D, Katlakunta S, Maramu N, Ranjan V and Mallick S 2021 Inorg. Chim. Acta 515 120069
[48] Sudha V, Murugadoss G and Thangamuthu R 2021 Sci. Rep. 11 3413
[1] Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries
Zilin Hu(胡紫霖), Bin Tang(唐彬), Ting Lin(林挺), Chu Zhang(张楚), Yaoshen Niu(牛耀申), Yuan Liu(刘渊), Like Gao(高立克), Fei Xie(谢飞), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yongsheng Hu(胡勇胜). Chin. Phys. B, 2024, 33(8): 088202.
[2] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[3] Coupling of quasi-localized and phonon modes in glasses at low frequency
Jun Duan(段军), Song-Lin Cai(蔡松林), Gan Ding(丁淦), Lan-Hong Dai(戴兰宏), and Min-Qiang Jiang(蒋敏强). Chin. Phys. B, 2024, 33(5): 056502.
[4] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
[5] Effect of overheating-induced minor addition on Zr-based metallic glasses
Fu Yang(杨福), Zhenxing Bo(薄振兴), Yao Huang(黄瑶), Yutian Wang(王雨田), Boyang Sun(孙博阳), Zhen Lu(鲁振), Baoan Sun(孙保安), Yanhui Liu(柳延辉), Weihua Wang(汪卫华), and Mingxiang Pan(潘明祥). Chin. Phys. B, 2024, 33(3): 036401.
[6] Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids
H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝). Chin. Phys. B, 2024, 33(1): 016101.
[7] Synthesis and electrochemical performance of La2CuO4 as a promising coating material for high voltage Li-rich layered oxide cathodes
Fuliang Guo(郭福亮), Jiaze Lu(卢嘉泽), Meihua Su(苏美华), Yue Chen(陈约), Jieyun Zheng(郑杰允), Liang Yin(尹良), and Hong Li(李泓). Chin. Phys. B, 2023, 32(8): 088201.
[8] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[9] A group of ductile metallic glasses prepared by modifying local structure of icosahedral quasicrystals
Qi Qiao(乔琪), Ji Wang(王吉), Zhengqing Cai(蔡正清), Shidong Feng(冯士东), Zhenqiang Song(宋贞强), Benke Huo(霍本科), Zijing Li(李子敬), and Li-Min Wang(王利民). Chin. Phys. B, 2023, 32(11): 116401.
[10] Structural origin for composition-dependent nearest atomic distance in Cu-Zr metallic glass
Chi Zhang(张驰), Hua-Shan Liu(刘华山), and Hai-Long Peng(彭海龙). Chin. Phys. B, 2023, 32(11): 116101.
[11] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[12] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[13] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
[14] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[15] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
No Suggested Reading articles found!