Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100503    DOI: 10.1088/1674-1056/ad6252
GENERAL Prev   Next  

Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs

Haoguang Liu(刘浩广)†
College of Science and Technology, Nanchang Aeronautical University, Nanchang 332020, China
Abstract  We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle, employing two-level systems as the working substance and operating in dual-squeezed reservoirs. We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum $\chi$ criterion will degenerate to $ \eta_-=\eta_{\rm C}/(2-\eta_{\rm C})$ and $ \varepsilon_-=(\sqrt{9+8\varepsilon_{\rm C}}-3)/2$ when symmetric squeezing is satisfied, respectively. We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum $\chi$ criterion. These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum $\chi$ criterion can be improved, reduced or even inhibited in asymmetric squeezing. Furthermore, we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system. However, the coefficient of performance of the corresponding refrigerator is higher.
Keywords:  quantum Otto heat engine      quantum Otto refrigerator      optimization performance      dual-squeezed reservoirs  
Received:  11 May 2024      Revised:  09 July 2024      Accepted manuscript online:  12 July 2024
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Corresponding Authors:  Haoguang Liu     E-mail:  lhg780527@sina.com

Cite this article: 

Haoguang Liu(刘浩广) Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs 2024 Chin. Phys. B 33 100503

[1] Yan Z and Chen J 1990 J. Phys. D: Appl. Phys. 23 136
[2] Agrawal D C and Menon V J 1990 J. Phys. A 23 5319
[3] Allahverdyan A E, Hovhannisyan K and Mahler G 2010 Phys. Rev. E 81 051129
[4] Apertet Y, Ouerdane H, Michot A, Goupil C and Lecoeur P 2013 Europhys. Lett. 103 40001
[5] Curzon F L and Ahlborn B 1975 Am. J. Phys. 43 22
[6] Esposito M, Kawai R, Lindenberg K and Van den Broeck C 2010 Phys. Rev. Lett. 105 150603
[7] Izumida Y and Okuda K 2012 Europhys. Lett. 97 10004
[8] Iyyappan I and Johal R S 2020 Europhys. Lett. 128 50004
[9] Whitney R S 2014 Phys. Rev. Lett. 112 130601
[10] Whitney R S 2015 Phys. Rev. B 91 115425
[11] Ryabov A and Holubec V 2016 Phys. Rev. E 93 050101(R)
[12] Holubec V and Ryabov A 2016 J. Stat. Mech. 07 073204
[13] Guo J, Yang H, Zhang H, Gonzalez-Ayala J, Roco J, Medina A and Hernández A C 2019 Energy Convers. Manag. 198 111917
[14] Thomas G and Johal R S 2015 J. Phys. A 48 335002
[15] Johal R S 2018 Europhys. Lett. 121 50009
[16] Johal R S 2019 Phys. Rev. E 100 052101
[17] Tomás C, Hernández A C and Roco J M M 2012 Phys. Rev. E 85 010104
[18] Izumida Y, Okuda K, Hernández A C and Roco J 2013 Europhys. Lett. 101 10005
[19] Velasco S, Roco J M M, Medina A and Hernández A C 1997 Phys. Rev. Lett. 78 3241
[20] Liu H G, He J and Wang J 2023 Chin. Phys. B 32 030503
[21] Wang C and Xu D Z 2020 Chin. Phys. B 29 80504
[22] Liu Y F, Lu J C and Wang R Q 2020 Chin. Phys. B 29 40504
[23] Wang M J and Xia Y J 2019 Chin. Phys. B 28 60303
[24] Chen X M and Wang C 2019 Chin. Phys. B 28 50502
[25] Liu H G, He J and Wang J 2022 J. Appl. Phys. 131 214303
[26] Abah O and Lutz E 2016 Europhys. Lett. 113 60002
[27] Correa L A, Palao J P, Adesso G and Alonso D 2014 Phys. Rev. E 90 062124
[28] Linden N, Popescu S and Skrzypczyk P 2010 Phys. Rev. Lett. 105 130401
[29] Wang J, Wu Z and He J 2012 Phys. Rev. E 85 041148
[30] Vinjanampathy S and Anders J 2016 Contemp. Phys. 57 545
[31] Karimi B and Pekola J P 2016 Phys. Rev. B 94 184503
[32] Kosloff R and Rezek Y 2017 Entropy 19 136
[33] Peterson J P S, Batalhão T B, Herrera M, Souza A M, Sarthour R S, Oliveira I S and Serra R M 2019 Phys. Rev. Lett. 123 240601
[34] Erdman P A, Cavina V, Fazio R, Taddei F and Giovannetti V 2019 New J. Phys. 21 103049
[35] Lee S, Ha M, Park J M and Jeong H 2020 Phys. Rev. E 101 022127
[36] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[37] Long R and Liu W 2015 Phys. Rev. E 91 062137
[38] Manzano G, Galve F, Zambrini R and Parrondo J M R 2016 Phys. Rev. E 93 052120
[39] Klaers J, Faelt S, Imamoglu A and Togan E 2017 Phys. Rev. X 7 031044
[40] Assis R J, Sales J S, Mendes U C and Almeida N G 2021 J. Phys. B: At. Mol. Opt. Phys. 54 095501
[41] Singh V and Müstecaplıoǧlu O E 2020 arXiv: 2006 08311
[42] Assis R J, Mendonça T M, Villas-Boas C J, Souza A M, Sarthour R S, Oliveira I S and Almeida N G 2019 Phys. Rev. Lett. 122 240602
[43] Huang X L, Wang T and Yi X X 2012 Phys. Rev. E 86 051105
[44] Agarwalla B K, Jiang J H and Segal D 2017 Phys. Rev. B 96 104304
[45] Niedenzu W, Mukherjee V, Ghosh A, kofman A G and Kurizki G 2018 Nat. Commun. 9 165
[46] Zhang Y C 2020 Physica A 559 125083
[47] Wang R, Wang J H and He J Z 2013 Phys. Rev. E 87 042119
[48] Assis R J, Sales J S, Cunha J A R and Almeida N G 2020 Phys. Rev. E 102 052131
[49] Srikanth R and Banerjee S 2008 Phys. Rev. A 77 012318
[50] Alicki R 1979 J. Phys. A: Math. Gen. 12 L103
[51] Kosloff R 1984 J. Chem. Phys. 80 1625
[52] Wang J H, He J Z and Ma Y L 2019 Phys. Rev. E 100 052126
[53] Abah O, Roßnagel J, Jacob G, Deffner S, Schmidt-Kaler F, Singer K and Lutz E 2012 Phys. Rev. Lett. 109 203006
[54] Abah O and Lutz E 2014 Europhys. Lett. 106 20001
[55] Izumida Y and Okuda K 2012 Europhys. Lett. 97 10004
[56] Tomas C 2013 Phys. Rev. E 87 012105
[57] Rui L and Wei L 2014 Phys. Rev. E 89 062119
[58] Juncheng G, Junyi W and Jincan C 2013 Phys. Rev. E 87 012133
[59] Yang W and Mingxing L 2012 Phys. Rev. E 86 011127
[1] Two innovative equivalent statements of the third law of thermodynamics
Xiaohang Chen(陈晓航), Yinghui Zhou(周颖慧), and Jincan Chen(陈金灿)|. Chin. Phys. B, 2024, 33(6): 060504.
[2] Dynamic response of a thermal transistor to time-varying signals
Qinli Ruan(阮琴丽), Wenjun Liu(刘文君), and Lei Wang(王雷). Chin. Phys. B, 2024, 33(5): 056301.
[3] Symmetric Brownian motor subjected to Lévy noise
Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如). Chin. Phys. B, 2024, 33(2): 020502.
[4] A discrete Boltzmann model with symmetric velocity discretization for compressible flow
Chuandong Lin(林传栋), Xiaopeng Sun(孙笑朋), Xianli Su(苏咸利),Huilin Lai(赖惠林), and Xiao Fang(方晓). Chin. Phys. B, 2023, 32(11): 110503.
[5] Analysis of anomalous transport with temporal fractional transport equations in a bounded domain
Kaibang Wu(吴凯邦), Jiayan Liu(刘嘉言), Shijie Liu(刘仕洁), Feng Wang(王丰), Lai Wei(魏来), Qibin Luan(栾其斌), and Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2023, 32(11): 110502.
[6] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[7] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[8] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[9] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[10] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[11] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[12] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[13] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[14] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[15] Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions
"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛). Chin. Phys. B, 2020, 29(12): 120505.
No Suggested Reading articles found!