|
|
Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs |
Haoguang Liu(刘浩广)† |
College of Science and Technology, Nanchang Aeronautical University, Nanchang 332020, China |
|
|
Abstract We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle, employing two-level systems as the working substance and operating in dual-squeezed reservoirs. We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum $\chi$ criterion will degenerate to $ \eta_-=\eta_{\rm C}/(2-\eta_{\rm C})$ and $ \varepsilon_-=(\sqrt{9+8\varepsilon_{\rm C}}-3)/2$ when symmetric squeezing is satisfied, respectively. We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum $\chi$ criterion. These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum $\chi$ criterion can be improved, reduced or even inhibited in asymmetric squeezing. Furthermore, we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system. However, the coefficient of performance of the corresponding refrigerator is higher.
|
Received: 11 May 2024
Revised: 09 July 2024
Accepted manuscript online: 12 July 2024
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
Corresponding Authors:
Haoguang Liu
E-mail: lhg780527@sina.com
|
Cite this article:
Haoguang Liu(刘浩广) Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs 2024 Chin. Phys. B 33 100503
|
[1] Yan Z and Chen J 1990 J. Phys. D: Appl. Phys. 23 136 [2] Agrawal D C and Menon V J 1990 J. Phys. A 23 5319 [3] Allahverdyan A E, Hovhannisyan K and Mahler G 2010 Phys. Rev. E 81 051129 [4] Apertet Y, Ouerdane H, Michot A, Goupil C and Lecoeur P 2013 Europhys. Lett. 103 40001 [5] Curzon F L and Ahlborn B 1975 Am. J. Phys. 43 22 [6] Esposito M, Kawai R, Lindenberg K and Van den Broeck C 2010 Phys. Rev. Lett. 105 150603 [7] Izumida Y and Okuda K 2012 Europhys. Lett. 97 10004 [8] Iyyappan I and Johal R S 2020 Europhys. Lett. 128 50004 [9] Whitney R S 2014 Phys. Rev. Lett. 112 130601 [10] Whitney R S 2015 Phys. Rev. B 91 115425 [11] Ryabov A and Holubec V 2016 Phys. Rev. E 93 050101(R) [12] Holubec V and Ryabov A 2016 J. Stat. Mech. 07 073204 [13] Guo J, Yang H, Zhang H, Gonzalez-Ayala J, Roco J, Medina A and Hernández A C 2019 Energy Convers. Manag. 198 111917 [14] Thomas G and Johal R S 2015 J. Phys. A 48 335002 [15] Johal R S 2018 Europhys. Lett. 121 50009 [16] Johal R S 2019 Phys. Rev. E 100 052101 [17] Tomás C, Hernández A C and Roco J M M 2012 Phys. Rev. E 85 010104 [18] Izumida Y, Okuda K, Hernández A C and Roco J 2013 Europhys. Lett. 101 10005 [19] Velasco S, Roco J M M, Medina A and Hernández A C 1997 Phys. Rev. Lett. 78 3241 [20] Liu H G, He J and Wang J 2023 Chin. Phys. B 32 030503 [21] Wang C and Xu D Z 2020 Chin. Phys. B 29 80504 [22] Liu Y F, Lu J C and Wang R Q 2020 Chin. Phys. B 29 40504 [23] Wang M J and Xia Y J 2019 Chin. Phys. B 28 60303 [24] Chen X M and Wang C 2019 Chin. Phys. B 28 50502 [25] Liu H G, He J and Wang J 2022 J. Appl. Phys. 131 214303 [26] Abah O and Lutz E 2016 Europhys. Lett. 113 60002 [27] Correa L A, Palao J P, Adesso G and Alonso D 2014 Phys. Rev. E 90 062124 [28] Linden N, Popescu S and Skrzypczyk P 2010 Phys. Rev. Lett. 105 130401 [29] Wang J, Wu Z and He J 2012 Phys. Rev. E 85 041148 [30] Vinjanampathy S and Anders J 2016 Contemp. Phys. 57 545 [31] Karimi B and Pekola J P 2016 Phys. Rev. B 94 184503 [32] Kosloff R and Rezek Y 2017 Entropy 19 136 [33] Peterson J P S, Batalhão T B, Herrera M, Souza A M, Sarthour R S, Oliveira I S and Serra R M 2019 Phys. Rev. Lett. 123 240601 [34] Erdman P A, Cavina V, Fazio R, Taddei F and Giovannetti V 2019 New J. Phys. 21 103049 [35] Lee S, Ha M, Park J M and Jeong H 2020 Phys. Rev. E 101 022127 [36] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602 [37] Long R and Liu W 2015 Phys. Rev. E 91 062137 [38] Manzano G, Galve F, Zambrini R and Parrondo J M R 2016 Phys. Rev. E 93 052120 [39] Klaers J, Faelt S, Imamoglu A and Togan E 2017 Phys. Rev. X 7 031044 [40] Assis R J, Sales J S, Mendes U C and Almeida N G 2021 J. Phys. B: At. Mol. Opt. Phys. 54 095501 [41] Singh V and Müstecaplıoǧlu O E 2020 arXiv: 2006 08311 [42] Assis R J, Mendonça T M, Villas-Boas C J, Souza A M, Sarthour R S, Oliveira I S and Almeida N G 2019 Phys. Rev. Lett. 122 240602 [43] Huang X L, Wang T and Yi X X 2012 Phys. Rev. E 86 051105 [44] Agarwalla B K, Jiang J H and Segal D 2017 Phys. Rev. B 96 104304 [45] Niedenzu W, Mukherjee V, Ghosh A, kofman A G and Kurizki G 2018 Nat. Commun. 9 165 [46] Zhang Y C 2020 Physica A 559 125083 [47] Wang R, Wang J H and He J Z 2013 Phys. Rev. E 87 042119 [48] Assis R J, Sales J S, Cunha J A R and Almeida N G 2020 Phys. Rev. E 102 052131 [49] Srikanth R and Banerjee S 2008 Phys. Rev. A 77 012318 [50] Alicki R 1979 J. Phys. A: Math. Gen. 12 L103 [51] Kosloff R 1984 J. Chem. Phys. 80 1625 [52] Wang J H, He J Z and Ma Y L 2019 Phys. Rev. E 100 052126 [53] Abah O, Roßnagel J, Jacob G, Deffner S, Schmidt-Kaler F, Singer K and Lutz E 2012 Phys. Rev. Lett. 109 203006 [54] Abah O and Lutz E 2014 Europhys. Lett. 106 20001 [55] Izumida Y and Okuda K 2012 Europhys. Lett. 97 10004 [56] Tomas C 2013 Phys. Rev. E 87 012105 [57] Rui L and Wei L 2014 Phys. Rev. E 89 062119 [58] Juncheng G, Junyi W and Jincan C 2013 Phys. Rev. E 87 012133 [59] Yang W and Mingxing L 2012 Phys. Rev. E 86 011127 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|