Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107505    DOI: 10.1088/1674-1056/ad6b84
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect

Jin Zhan(湛劲)1, Yi Wang(王一)1, Xianjie Wang(王先杰)1,5,6,†, Hanxu Zhang(张晗旭)1, Senyin Zhu(朱森寅)1, Lingli Zhang(张伶莉)1, Lingling Tao(陶玲玲)1, Yu Sui(隋郁)1, Wenqing He(何文卿)2, Caihua Wan(万蔡华)2, Xiufeng Han(韩秀峰)2, V. I. Belotelov3, and Bo Song(宋波)4,5,6,‡
1 School of Physics, Harbin Institute of Technology, Harbin 150001, China;
2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Russian Quantum Center, Moscow 119991, Russia;
4 National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China;
5 Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China;
6 Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150001, China
Abstract  Magnetic films with low Gilbert damping are crucial for magnonic devices, which provide a promising platform for realizing ultralow-energy devices. In this study, low Gilbert damping and coercive field were observed in Bi/In-doped yttrium iron garnet (BiIn:YIG) thin films. The BiIn:YIG (444) films were deposited onto different substrates using pulsed laser deposition. Low coercivity ($<$1 Oe) with saturation magnetization of 125.09 emu/cc was achieved along the in-plane direction of BiIn:YIG film. The values of Gilbert damping and inhomogeneous broadening of ferromagnetic resonance in BiIn:YIG films were obtained to be as low as $4.05\times 10^{-4}$ and 5.62 Oe, respectively. In addition to low damping, the giant Faraday rotation angles (up to $2.9\times 10^{4}$ deg/cm) were also observed in the BiIn:YIG film. By modifying the magnetic structure and coupling effect between Bi$^{3+}$ and Fe$^{3+}$ of Bi:YIG, doped In$^{3+}$ plays a key role on variation of the magnetic properties. The low damping and giant Faraday effect made the BiIn:YIG film an appealing candidate for magnonic and magneto-optical devices.
Keywords:  magnonic device      Gilbert damping      Faraday effect  
Received:  21 May 2024      Revised:  15 July 2024      Accepted manuscript online:  06 August 2024
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  78.20.Ls (Magneto-optical effects)  
  75.50.Gg (Ferrimagnetics)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFE0201000), the National Science Fund for Distinguished Young Scholars (Grant No. 52225201), the National Natural Science Foundation of China (Grant Nos. 52372004 and 52072085), the Fundamental Research Funds for the Central Universities (Grant Nos. 2023FRFK06001 and HIT.BRET.2022001), and Heilongjiang Touyan Innovation Team Program.
Corresponding Authors:  Xianjie Wang, Bo Song     E-mail:  wangxianjie@hit.edu.cn;songbo@hit.edu.cn

Cite this article: 

Jin Zhan(湛劲), Yi Wang(王一), Xianjie Wang(王先杰), Hanxu Zhang(张晗旭), Senyin Zhu(朱森寅), Lingli Zhang(张伶莉), Lingling Tao(陶玲玲), Yu Sui(隋郁), Wenqing He(何文卿), Caihua Wan(万蔡华), Xiufeng Han(韩秀峰), V. I. Belotelov, and Bo Song(宋波) Low Gilbert damping in Bi/In-doped YIG thin films with giant Faraday effect 2024 Chin. Phys. B 33 107505

[1] Zhang S S L and Zhang S 2012 Phys. Rev. Lett. 109 096603
[2] Zhang S S L and Zhang S 2012 Phys. Rev. B 86 214424
[3] Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205
[4] Guo C Y, Wan C H, Wang X, Fang C, Tang P, Kong W J, Zhao M K, Jiang L N, Tao B S and Yu G Q 2018 Phys. Rev. B 98 134426
[5] He W, Wu H, Guo C, Wan C, Zhao M, Xing Y, Tang P, Yan Z, Xia J and Yu T 2021 Appl. Phys. Lett. 119 212410
[6] Guo C Y, Wan C H, He W Q, Zhao M K, Yan Z R, Xing Y W, Wang X, Tang P, Liu Y Z and Zhang S 2020 Nat. Electron. 3 304
[7] Wang C, Cao Y, Wang X R and Yan P 2018 Phys. Rev. B 98 144417
[8] Lin W, Chen K, Zhang S and Chien C L 2016 Phys. Rev. Lett. 116 186601
[9] Nozue T, Kikkawa T, Watamura T, Niizeki T, Ramos R, Saitoh E and Murakami H 2018 Appl. Phys. Lett. 113 262402
[10] Hu Y, Weir M P, Pereira H J, Amin O J, Pitcairn J, Cliffe M J, Rushforth A W, Kunakova G, Niherysh K, Korolkov V, Kertfoot J, Makarovsky O and Woodward S 2023 Appl. Phys. Lett. 123 223902
[11] Hansen P, Witter K and Tolksdorf W 1983 Phys. Rev. B 27 6608
[12] Matsumoto K, Sasaki S, Haraga K I, Yamaguchi K, Fujii T and Asahara Y 1992 J. Appl. Phys. 71 2467
[13] Fakhrul T, Tazlaru S, Beran L, Zhang Y, Veis M and Ross C A 2019 Adv. Opt. Mater. 7 1900056
[14] Wittekoek S, Popma T J, Robertson J and Bongers P 1975 Phys. Rev. B 12 2777
[15] Fan Y, Gross M J, Fakhrul T, Finley J, Hou J T, Ngo S, Liu L and Ross C A 2023 Nat. Nanotechnol. 18 1000
[16] Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J and Beach G S D 2020 Science 370 1438
[17] Kirihara A, Uchida K i, Kajiwara Y, Ishida M, Nakamura Y, Manako T, Saitoh E and Yorozu S 2012 Nat. Mater. 11 686
[18] Fakhrul T, Khurana B, Nembach H T, Shaw J M, Fan Y, Riley G A, Liu L and Ross C A 2023 Adv. Mater. Interfaces 10 2300217
[19] Siegel G, Prestgard M C, Teng S and Tiwari A 2014 Sci. Rep. 4 4429
[20] Kikuchi D, Ishida M, Uchida K, Qiu Z, Murakami T and Saitoh E 2015 Appl. Phys. Lett. 106 082401
[21] Merbouche H, Divinskiy B, Gouéré D, Lebrun R, El Kanj A, Cros V, Bortolotti P, Anane A, Demokritov S O and Demidov V E 2024 Nat. Commun. 15 1560
[22] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Ben Youssef J, Bortolotti P, Cros V and Anane A 2018 Nat. Commun. 9 3355
[23] Alam M S, Wang C, Chen J, Zhang J, Liu C, Xiao J, Wu Y, Bi L and Yu H 2019 Phys. Lett. A 383 366
[24] Zhou L, Song H, Liu K, Luan Z, Wang P, Sun L, Jiang S, Xiang H, Chen Y and Du J 2018 Sci. Adv. 4 eaao3318
[25] Zhang H X, Zhu S Y, Zhan J, Wang X J, Wang Y, Yao T, Mezin N I and Song B 2023 Chin. Phys. Lett. 40 127801
[26] Sun Y, Song Y Y, Chang H, Kabatek M, Jantz M, Schneider W, Wu M, Schultheiss H and Hoffmann A 2012 Appl. Phys. Lett. 101 152405
[27] Liu T, Chang H, Vlaminck V, Sun Y, Kabatek M, Hoffmann A, Deng L and Wu M 2014 J. Appl. Phys. 115 17A501
[28] Nazlan R, Hashim M, Ibrahim I R, Mohd Idris F, Wan Ab Rahman W N, Abdullah N H, Ismail I, Kanagesan S, Abbas Z and Azis R S 2015 J. Mater. Sci.: Mater. Electron. 26 3596
[29] Jia Y, Liang Z, Pan H, Wang Q, Lv Q, Yan Y, Jin F, Hou D, Wang L and Wu W 2023 Chin. Phys. B 32 027501
[30] Yang Q H, Zhnag H W, Wen Q Y, Liu Y L, Ihor M S and Ihor I S 2009 Chin. Phys. Lett. 26 047401
[31] Ibrahim N B, Edwards C and Palmer S B 2000 J. Magn. Magn. Mater. 220 183
[32] Krishnan R 1977 Appl. Phys. Lett. 31 237
[33] Geller S and Gilleo M A 1957 J. Phys. Chem. Solids 3 30
[34] Geschwind S 1961 J. Appl. Phys. 32 S263
[35] Gallagher J C, Yang A S, Brangham J T, Esser B D, White S P, Page M R, Meng K Y, Yu S, Adur R and Ruane W 2016 Appl. Phys. Lett. 109 072401
[36] Lin Y, Jin L, Zhang H, Zhong Z, Yang Q, Rao Y and Li M 2020 J. Magn. Magn. Mater. 496 165886
[37] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017
[38] Gilleo M A and Geller S 1958 J. Appl. Phys. 29 380
[39] Hauser C, Richter T, Homonnay N, Eisenschmidt C, Qaid M, Deniz H, Hesse D, Sawicki M, Ebbinghaus S G and Schmidt G 2016 Sci. Rep. 6 20827
[40] Kumar R, Samantaray B and Hossain Z 2019 J. Phys.: Condens. Matter 31 435802
[41] Gurjar G, Sharma V, Patnaik S and Kuanr B K 2021 Mater. Res. Express 8 066401
[42] Petit S, Baraduc C, Thirion C, Ebels U, Liu Y, Li M, Wang P and Dieny B 2007 Phys. Rev. Lett. 98 077203
[43] Kang C, Wang T, Jiang C, Chen K and Chai G 2021 J. Alloys Compd. 865 158903
[44] Wang W, Li P, Cao C, Liu F, Tang R, Chai G and Jiang C 2018 Appl. Phys. Lett. 113 042401
[45] Kalarickal S S, Krivosik P, Wu M, Patton C E, Schneider M L, Kabos P, Silva T J and Nibarger J P 2006 J. Appl. Phys. 99 093909
[46] Kehlberger A, Richter K, Onbasli M C, Jakob G, Kim D H, Goto T, Ross C A, Götz G, Reiss G, Kuschel T and Kläui M 2015 Phys. Rev. Appl. 4 014008
[47] Vasili H B, Casals B, Cichelero R, Macià F, Geshev J, Gargiani P, Valvidares M, Herrero-Martin J, Pellegrin E, Fontcuberta J and Herranz G 2017 Phys. Rev. B 96 014433
[48] Grachev A A, Sheshukova S E, Kostylev M P, Nikitov S A and Sadovnikov A V 2023 Phys. Rev. Appl. 19 054089
[49] Zhao Z, Zhang L, Chen Y, Zhong Z, Tang X, Zhang Y, Zhang H and Jin L 2024 Appl. Phys. Lett. 124 052405
[50] Han J, Zhang P, Hou J T, Siddiqui S A and Liu L 2019 Science 366 1121
[51] Liu Q B, Meng K K, Xu Z D, Zhu T, Xu X G, Miao J and Jiang Y 2020 Phys. Rev. B 101 174431
[52] Hurben M J and Patton C E 1998 J. Appl. Phys. 83 4344
[53] Zenkov A V, Moskvin A S 2002 J. Phys.: Condens. Matter 14 6957
[54] Parchenko S, Stupakiewicz A, Yoshimine I, Satoh T and Maziewski A 2013 Appl. Phys. Lett. 103 172402
[55] Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839
[56] Xu K, Zhang L, Godfrey A, Song D, Si W, Zhao Y, Liu Y, Rao Y, Zhang H and Zhou H A 2021 Proc. Natl. Acad. Sci. USA 118 e2101106118
[57] Liang X, Xie J, Deng L and Bi L 2015 Appl. Phys. Lett. 106 052401
[58] Crossley W A, Cooper R W, Page J L and Van Stapele R P 1970 Phys. Rev. B 1 4503
[59] Takeuchi H, Shinagawa K and Taniguchi S 1973 Jpn. J. Appl. Phys. 12 465
[60] Alam M N E, Vasiliev M and Alameh K 2014 Opt. Mater. Express 4 1866
[61] Nur-E-Alam M, Vasiliev M and Alameh K 2017 Opt. Mater. Express 7 676
[62] Kuila M, Deshpande U, Choudhary R J, Rajput P, Phase D M and Raghavendra Reddy V 2021 J. Appl. Phys. 129 093903
[63] Dionne G F and Allen G A 1993 J. Appl. Phys. 73 6127
[1] Simulation of magnetization process and Faraday effect of magnetic bilayer films
Sheng Gao(高升), An Du(杜安), Lei Zhang(张磊), Tian-Guang Li(李天广), and Da-Cheng Ma(马大成). Chin. Phys. B, 2024, 33(9): 097505.
[2] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[3] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[4] Demonstration of Faraday anomalous dispersion optical filter with reflection configuration
Yi Liu(刘艺), Baodong Yang(杨保东), Junmin Wang(王军民), Wenyi Huang(黄文艺), Zhiyu Gou(缑芝玉), and Haitao Zhou(周海涛). Chin. Phys. B, 2022, 31(1): 017804.
[5] Temperature-dependent Gilbert damping in Co2 FeAl thin films with different B2 ordering degrees
Gesang Dunzhu(格桑顿珠), Yi-Bing Zhao(赵逸冰), Ying Jin(金莹), Cai Zhou(周偲), and Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(12): 126701.
[6] Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter
Zhaojie Jiang(蒋招杰), Qi Zhou(周琦), Zhiming Tao(陶智明), Xiaogang Zhang(张晓刚), Shengnan Zhang(张盛楠), Chuanwen Zhu(祝传文), Pingwei Lin(林平卫), Jingbiao Chen(陈景标). Chin. Phys. B, 2016, 25(8): 083201.
[7] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[8] Spin pumping at the Co2FeAl0.5Si0.5/Pt interface
Wu Yong (吴勇), Zhao Yue-Lei (赵月雷), Xiong Qiang (熊强), Xu Xiao-Guang (徐晓光), Sun Young (孙阳), Zhang Shi-Qing (张十庆), Jiang Yong (姜勇). Chin. Phys. B, 2014, 23(1): 018503.
No Suggested Reading articles found!