Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5 |
Tian Le(乐天)1,2,†, Jinjin Liu(刘锦锦)3,4, Zhiwei Wang(王秩伟)3,4,5, and Xiao Lin(林效)1,2,‡ |
1 Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China; 2 Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; 3 Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China; 4 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China; 5 Material Science Center, Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314011, China |
|
|
Abstract The hysteresis of magnetoresistance observed in superconductors is of great interest due to its potential connection with unconventional superconductivity. In this study, we perform electrical transport measurements on kagome superconductor CsV$_3$Sb$_5$ nanoflakes and uncover unusual hysteretic behavior of magnetoresistance in the superconducting state. This hysteresis can be induced by applying either a large DC or AC current at temperatures ($T$) well below the superconducting transition temperature ($T_{\rm c}$). As $T$ approaches $T_{\rm c}$, similar weak hysteresis is also detected by applying a small current. Various scenarios are discussed, with particular focus on the effects of vortex pinning and the presence of time-reversal-symmtery-breaking superconducting domains. Our findings support the latter, hinting at chiral superconductivity in kagome superconductors.
|
Received: 13 June 2024
Revised: 11 July 2024
Accepted manuscript online: 17 July 2024
|
PACS:
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.25.F-
|
(Transport properties)
|
|
85.25.-j
|
(Superconducting devices)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
Fund: Project supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (Grant No. 2024SDXHDX0007), the National Natural Science Foundation of China (Grant No. 12474131), the China Postdoctoral Science Foundation (Grant Nos. 2022M722845 and 2023T160586), the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (Grant No. LR23A040001), the Research Center for Industries of the Future (RCIF) at Westlake University (Grant No. WU2023C009), the National Key R&D Program of China (Grant Nos. 2020YFA0308800 and 2022YFA1403400), and the Beijing Natural Science Foundation (Grant No. Z210006). |
Corresponding Authors:
Tian Le, Xiao Lin
E-mail: letian@westlake.edu.cn;linxiao@westlake.edu.cn
|
Cite this article:
Tian Le(乐天), Jinjin Liu(刘锦锦), Zhiwei Wang(王秩伟), and Xiao Lin(林效) Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5 2024 Chin. Phys. B 33 107402
|
[1] Ye H Q, Le T, Su H, Zhang Y N, Luo S S, Gutmann M J, Yuan H Q and Smidman M 2022 Phys. Rev. B 105 014405 [2] Ye H Q, Zhang Y N, Le T, Yuan H Q and Smidman M 2024 Phys. Rev. B 109 104414 [3] Wu M, Lou Z, Dai C M, Wang T, Wang J, Zhu Z, Xu Z, Sun T, Li W, Zheng X and Lin X 2023 Adv. Mater. 35 2300450 [4] Nöel P, Trier F, Vicente Arche L M, Bréhin J, Vaz D C, Garcia V, Fusil S, Barthélémy A, Vila L, Bibes M, et al. 2020 Nature 580 483 [5] Barber M E, Steppke A, Mackenzie A P and Hicks C W 2019 Rev. Sci. Instrum. 90 023904 [6] Lv B Q, Zong A, Wu D, Rozhkov A V, Fine B V, Chen S D, Hashimoto M, Lu D H, Li M, Huang Y B, Ruff J P C, Walko D A, Chen Z H, Hwang I, Su Y, Shen X, Wang X, Han F, Po H C, Wang Y, JarilloHerrero P, Wang X, Zhou H, Sun C J, Wen H, Shen Z X, Wang N L and Gedik N 2022 Phys. Rev. Lett. 128 036401 [7] Ji L, Rzchowski M S, Anand N and Tinkham M 1993 Phys. Rev. B 47 470 [8] Felner I, Galstyan E, Lorenz B, Cao D, Wang Y S, Xue Y Y and Chu C W 2003 Phys. Rev. B 67 134506 [9] Ru H, Lin Y S, Chen Y C, Feng Y and Wang Y H 2019 Chin. Phys. Lett. 36 077402 [10] Semenov S, Balaev A and Balaev D 2019 J. Appl. Phys. 125 033903 [11] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802 [12] Hua X, Zeng Z, Meng F, Yao H, Huang Z, Long X, Li Z, Wang Y, Wang Z, Wu T, et al. 2024 Nat. Phys. 20 957 [13] Chiu S P, Tsuei C, Yeh S S, Zhang F C, Kirchner S and Lin J J 2021 Sci. Adv. 7 eabg6569 [14] Wang J, Gong X, Yang G, Lyu Z, Pang Y, Liu G, Ji Z, Fan J, Jing X, Yang C, et al. 2017 Phys. Rev. B 96 054519 [15] Kidwingira F, Strand J, Van Harlingen D and Maeno Y 2006 Science 314 1267 [16] Wang S, Feng X, Fang J Z, Peng J P, Sun Z T, Yang J J, Liu J, Zhao J J, Wang J K, Liu X J, et al. 2024 arXiv:2405.12592 [17] Jiang K, Wu T, Yin J X, Wang Z, Hasan M Z, Wilson S D, Chen X and Hu J 2023 Nat. Sci. Rev. 10 nwac199 [18] Wilson S D and Ortiz B R 2024 Nat. Rev. Mater. 9 420 [19] Wang Y, Liu Y, Hao Z, Cheng W, Deng J, Wang Y, Gu Y, Ma X M, Rong H, Zhang F, et al. 2023 Chin. Phys. Lett. 40 037102 [20] Zhu H, Li T, Yu F, Li Y, Wang S, Wu Y, Liu Z, Shang Z, Cui S, Liu Y, et al. 2023 Chin. Phys. Lett. 40 047301 [21] Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z and Luo J 2021 Chin. Phys. Lett. 38 077402 [22] Duan W, Nie Z, Luo S, Yu F, Ortiz B R, Yin L, Su H, Du F, Wang A, Chen Y, et al. 2021 Sci. Chin. Phys. Mechan. Astron. 64 107462 [23] Roppongi M, Ishihara K, Tanaka Y, Ogawa K, Okada K, Liu S, Mukasa K, Mizukami Y, Uwatoko Y, Grasset R, et al. 2023 Nat. Commun. 14 667 [24] Zhong Y, Liu J, Wu X, Guguchia Z, Yin J X, Mine A, Li Y, Najafzadeh S, Das D, Mielke III C, et al. 2023 Nature 617 488 [25] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, et al. 2021 Nature 599 222 [26] Ge J, Wang P, Xing Y, Yin Q, Wang A, Shen J, Lei H, Wang Z and Wang J 2024 Phys. Rev. X 14 021025 [27] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 [28] Zhao H, Li H, Ortiz B R, Teicher S M, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [29] Mielke III C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, et al. 2022 Nature 602 245 [30] Guo C, Putzke C, Konyzheva S, Huang X, Gutierrez-Amigo M, Errea I, Chen D, Vergniory M G, Felser C, Fischer M H, et al. 2022 Nature 611 461 [31] Farhang C, Wang J, Ortiz B R, Wilson S D and Xia J 2023 Nat. Commun. 14 5326 [32] Gupta R, Das D, Mielke III C, Ritz E T, Hotz F, Yin Q, Tu Z, Gong C, Lei H, Birol T, et al. 2022 Commun. Phys. 5 232 [33] Yu L, Wang C, Zhang Y, Sander M, Ni S, Lu Z, Ma S, Wang Z, Zhao Z, Chen H, et al. 2021 arXiv:2107.10714 [34] Guguchia Z, Khasanov R and Luetkens H 2023 npj Quan. Mater. 8 41 [35] Le T, Pan Z, Xu Z, Liu J, Wang J, Lou Z, Yang X, Wang Z, Yao Y, Wu C, et al. 2024 Nature 630 64 [36] Samukawa Y, Maeda M, Jiang N, Nakamura R, Watanabe M, Takaki K, Moriyasu Y, Kudo K and Niimi Y 2024 arXiv:2404.19278 [37] Tinkham M 2004 Introduction to superconductivity (Courier Corporation) [38] Bouhon A and Sigrist M 2010 New J. Phys. 12 043031 [39] Rømer A T, Bhattacharyya S, Valentí R, Christensen M H and Andersen B M 2022 Phys. Rev. B 106 174514 [40] Wu X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Di Sante D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, et al. 2021 Phys. Rev. Lett. 127 177001 [41] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|