Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100303    DOI: 10.1088/1674-1056/ad607b
GENERAL Prev   Next  

Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations

Long-Quan Lai(赖龙泉)1,† and Zhao Li(李照)2
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
Abstract  Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications. In this work, we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions. We give the regimes for discrete modes, and find that the emission can be distinctly suppressed. The configuration induces a broad band, but few particles are ejected due to the interference of the matter waves. We further qualitatively model the emission process and demonstrate the short-time behaviors. This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices, and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
Keywords:  Bose-Einstein condensate      matter-wave jet      periodic modulation  
Received:  28 May 2024      Revised:  05 July 2024      Accepted manuscript online:  09 July 2024
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
Fund: This work was supported by the China Scholarship Council (Grant No. 201906130092), the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant No. NY223065), and the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC1330).
Corresponding Authors:  Long-Quan Lai     E-mail:  lqlai@njupt.edu.cn

Cite this article: 

Long-Quan Lai(赖龙泉) and Zhao Li(李照) Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations 2024 Chin. Phys. B 33 100303

[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[2] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863
[3] Moon G, Heo M S, Kim Y, Noh H R and Jhe W 2017 Phys. Rep. 698 1
[4] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[5] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114
[6] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453
[7] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821
[8] Molignini P, Chitra R and Chen W 2019 Europhys. Lett. 128 36001
[9] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027
[10] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168
[11] Wintersperger K, Bukov M, Näger J, Lellouch S, Demler E, Schneider U, Bloch I, Goldman N and Aidelsburger M 2020 Phys. Rev. X 10 011030
[12] Song B, Dutta S, Bhave S, Yu J C, Carter E, Cooper N and Schneider U 2022 Nat. Phys. 18 259
[13] Pollack S E, Dries D, Hulet R G, Magalhães K M F, Henn E A L, Ramos E R F, Caracanhas M A and Bagnato V S 2010 Phys. Rev. A 81 053627
[14] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[15] Clark L W, Gaj A, Feng L and Chin C 2017 Nature 551 356
[16] Fu H, Feng L, Anderson B M, Clark L W, Hu J, Andrade J W, Chin C and Levin K 2018 Phys. Rev. Lett. 121 243001
[17] Zhang Z, Yao K X, Feng L, Hu J and Chin C 2020 Nat. Phys. 16 652
[18] Feng L, Hu J, Clark L W and Chin C 2019 Science 363 521
[19] Fu H, Zhang Z, Yao K X, Feng L, Yoo J, Clark L W, Levin K and Chin C 2020 Phys. Rev. Lett. 125 183003
[20] Mežnaršič T, Žitko R, Arh T, Gosar K, Zupanič E and Jeglič P 2020 Phys. Rev. A 101 031601
[21] Kim K, Hur J, Huh S J, Choi S and Choi J Y 2021 Phys. Rev. Lett. 127 043401
[22] Chen T and Yan B 2018 Phys. Rev. A 98 063615
[23] Wu Z G and Zhai H 2019 Phys. Rev. A 99 063624
[24] Chih L Y and Holland M 2020 New J. Phys. 22 033010
[25] Lellouch S and Goldman N 2018 Quantum Sci. Technol. 3 024011
[26] Martone G I, Larré P ′E, Fabbri A and Pavloff N 2018 Phys. Rev. A 98 063617
[27] Zhang P F and Gu Y F 2020 SciPost Phys. 9 079
[28] Xu P and Zhang W X 2021 Phys. Rev. A 104 023324
[29] Liu N and Tu Z C 2020 Commun. Theor. Phys. 72 125501
[30] Lai L Q, Yu Y B and Mueller E J 2021 Phys. Rev. A 104 033308
[31] Lai L Q, Yu Y B and Mueller E J 2022 Phys. Rev. A 106 033302
[32] Lai L Q and Li Z 2024 Chin. Phys. B 33 030308
[33] Lai L Q, Li Z, Liu Q H and Yu Y B 2024 Ann. Phys. (Berlin) 536 2300365
[34] Zheng H L and Gu Q 2013 Front. Phys. 8 375
[35] Xue R, Li W D and Liang Z X 2014 Chin. Phys. Lett. 31 030302
[36] Cataldo H M and Jezek D M 2014 Phys. Rev. A 90 043610
[37] Chang N N, Yu Z F, Zhang A X and Xue J K 2017 Chin. Phys. B 26 115202
[38] Haldar S K and Alon O E 2019 New J. Phys. 21 103037
[39] Liu J L and Liang J Q 2019 Chin. Phys. B 28 110304
[40] Lindberg D R, Gaaloul N, Kaplan L, Williams J R, Schlippert D, Boege P, Rasel E M and Bondar D I 2023 J. Phys. B: At. Mol. Opt. Phys. 56 025302
[41] Korshynska K and Ulbricht S 2024 Phys. Rev. A 109 043321
[42] Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318
[43] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51
[44] Schachenmayer J, Daley A J and Zoller P 2011 Phys. Rev. A 83 043614
[45] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001
[46] Zhou T, Yang K, Zhu Z, Yu X, Yang S, Xiong W, Zhou X, Chen X, Li C, Schmiedmayer J, Yue X and Zhai Y 2019 Phys. Rev. A 99 013602
[47] Hu J, Feng L, Zhang Z and Chin C 2019 Nat. Phys. 15 785
[48] Chen Y Y, Zhang P F, Zheng W, Wu Z G and Zhai H 2020 Phys. Rev. A 102 011301
[49] Lyu C, Lv C and Zhou Q 2020 Phys. Rev. Lett. 125 253401
[50] Lv C, Zhang R and Zhou Q 2020 Phys. Rev. Lett. 125 253002
[51] Cheng Y T and Shi Z Y 2021 Phys. Rev. A 104 023307
[52] Zhang J, Yang X, Lv C, Ma S and Zhang R 2022 Phys. Rev. A 106 013314
[53] Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O and Arimondo E 2007 Phys. Rev. Lett. 99 220403
[54] Kuhr S 2016 Nat. Sci. Rev. 3 170
[55] Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516
[56] Grossmann F and Hänggi P 1992 Europhys. Lett. 18 571
[57] Kayanuma Y 1994 Phys. Rev. A 50 843
[58] Della Valle G, Ornigotti M, Cianci E, Foglietti V, Laporta P and Longhi S 2007 Phys. Rev. Lett. 98 263601
[59] Creffield C E 2007 Phys. Rev. Lett. 99 110501
[1] Different topological phase transitions in the Su-Schrieffer-Heeger model under different disorder structures
Yan Gu(古燕) and Zhanpeng Lu(陆展鹏). Chin. Phys. B, 2024, 33(9): 090202.
[2] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[3] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[4] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[5] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[6] Special breathing structures induced by bright solitons collision in a binary dipolar Bose-Einstein condensates
Gen Zhang(张根), Li-Zheng Lv(吕李政), Peng Gao(高鹏), and Zhan-Ying Yang(杨战营). Chin. Phys. B, 2023, 32(11): 110303.
[7] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
[8] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[9] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[12] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[13] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[14] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[15] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
No Suggested Reading articles found!