Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100701    DOI: 10.1088/1674-1056/ad73af
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Vector magnetometry in zero bias magnetic field using nitrogen-vacancy ensembles

Chunxing Li(李春兴)1,2, Fa-Zhan Shi(石发展)1,2,3, Jingwei Zhou(周经纬)1,2,3, and Peng-Fei Wang(王鹏飞)1,2,3,†
1 CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  The application of the vector magnetometry based on nitrogen-vacancy (NV) ensembles has been widely investigated in multiple areas. It has the superiority of high sensitivity and high stability in ambient conditions with microscale spatial resolution. However, a bias magnetic field is necessary to fully separate the resonance lines of optically detected magnetic resonance (ODMR) spectrum of NV ensembles. This brings disturbances in samples being detected and limits the range of application. Here, we demonstrate a method of vector magnetometry in zero bias magnetic field using NV ensembles. By utilizing the anisotropy property of fluorescence excited from NV centers, we analyzed the ODMR spectrum of NV ensembles under various polarized angles of excitation laser in zero bias magnetic field with a quantitative numerical model and reconstructed the magnetic field vector. The minimum magnetic field modulus that can be resolved accurately is down to $\sim 0.64 $ G theoretically depending on the ODMR spectral line width (1.8 MHz), and $\sim 2 $ G experimentally due to noises in fluorescence signals and errors in calibration. By using $^{13}$C purified and low nitrogen concentration diamond combined with improving calibration of unknown parameters, the ODMR spectral line width can be further decreased below 0.5 MHz, corresponding to $\sim 0.18 $ G minimum resolvable magnetic field modulus.
Keywords:  vector magnetometry      NV ensembles      optically detected magnetic resonance (ODMR)      zero bias magnetic field  
Received:  30 April 2024      Revised:  25 August 2024      Accepted manuscript online:  27 August 2024
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  76.30.Mi (Color centers and other defects)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFB3202800 and 2023YF0718400), Chinese Academy of Sciences (Grant No. ZDZBGCH2021002), Chinese Academy of Sciences (Grant No. GJJSTD20200001), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0303204), Anhui Initiative in Quantum Information Technologies, USTC Tang Scholar, and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Peng-Fei Wang     E-mail:  wpf@ustc.edu.cn

Cite this article: 

Chunxing Li(李春兴), Fa-Zhan Shi(石发展), Jingwei Zhou(周经纬), and Peng-Fei Wang(王鹏飞) Vector magnetometry in zero bias magnetic field using nitrogen-vacancy ensembles 2024 Chin. Phys. B 33 100701

[1] Goldman M L, Sipahigil A, Doherty M W, Yao N Y, Bennett S D, Markham M, Twitchen D J, Manson N B, Kubanek A and Lukin M D 2015 Phys. Rev. Lett. 114 145502
[2] Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F and Wrachtrup J 2009 Nat. Mater. 8 383
[3] Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S and Walsworth R L 2018 Phys. Rev. X 8 031025
[4] Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappellaro P, Hemmer P R, Yacoby A, Lukin M D and Walsworth R L 2010 Phys. Rev. B 82 201201
[5] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E and Awschalom D D 2010 Appl. Phys. Lett. 96 092504
[6] Steinert S, Dolde F, Neumann P, Aird A, Naydenov B, Balasubramanian G, Jelezko F and Wrachtrup J 2010 Rev. Sci. Instrum. 81 043705
[7] Wang P, Yuan Z, Huang P, Rong X, Wang M, Xu X, Duan C, Ju C, Shi F and Du J 2015 Nat. Commun. 6 6631
[8] Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F and Wrachtrup J 2011 Nat. Phys. 7 459
[9] Cheng Z, Ye X Y, Wu J D, Yu P, Wang C J, Wang M Q, Duan C K, Wang Y, Shi F Z, Tian C L, Chen H W, Wang P F and Du J F 2023 Phys. Rev. Applied 19 014057
[10] Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J and Wrachtrup J 2013 Nano Lett. 13 2738
[11] Foy C, Zhang L, Trusheim M E, Bagnall K R, Walsh M, Wang E N and Englund D R 2020 ACS Applied Materials & Interfaces 12 26525
[12] Kehayias P, Turner M J, Trubko R, Schloss J M, Hart C A, Wesson M, Glenn D R and Walsworth R L 2019 Phys. Rev. B 100 174103
[13] Broadway D A, Johnson B C, Barson M S J, Lillie S E, Dontschuk N, McCloskey D J, Tsai A, Teraji T, Simpson D A, Stacey A, McCallum J C, Bradby J E, Doherty M W, Hollenberg L C L and Tetienne J P 2019 Nano Lett. 19 4543
[14] Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Buttner F, Walsworth R L, Beach G S D and Yacoby A 2018 Nat. Commun. 9 2712
[15] van der Sar T, Casola F, Walsworth R and Yacoby A 2015 Nat. Commun. 6 7886
[16] Fu R R, Weiss B P, Lima E A, Kehayias P, Araujo J F D F, Glenn D R, Gelb J, Einsle J F, Bauer A M, Harrison R J, Ali G A H and Walsworth R L 2017 Earth and Planetary Science Letters 458 1
[17] Glenn D R, Fu R R, Kehayias P, Le Sage D, Lima E A, Weiss B P and Walsworth R L 2017 Geochemistry, Geophysics, Geosystems 18 3254
[18] Turner M J, Langellier N, Bainbridge R, Walters D, Meesala S, Babinec T M, Kehayias P, Yacoby A, Hu E, Lončar M, Walsworth R L and Levine E V 2020 Phys. Rev. Applied 14 014097
[19] Fleig T, Frontera P and Ieee 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), 2018 Apr 23–26, Monterey, CA, pp. 1107–1112
[20] Dunlop D J and Özdemir Ö 1997 Rock Magnetism: Fundamentals and Frontiers (Cambridge: Cambridge University Press)
[21] Lenz T, Wickenbrock A, Jelezko F, Balasubramanian G and Budker D 2021 Quantum Science and Technology 6 034006
[22] Zheng H, Xu J, Iwata G Z, Lenz T, Michl J, Yavkin B, Nakamura K, Sumiya H, Ohshima T, Isoya J, Wrachtrup J, Wickenbrock A and Budker D 2019 Phys. Rev. Applied 11 064068
[23] Münzhuber F, Bayer F, Marković V, Brehm J, Kleinlein J, Molenkamp L W and Kiessling T 2020 Phys. Rev. Applied 14 014055
[24] Barry J F, Schloss J M, Bauch E, Turner M J, Hart C A, Pham L M and Walsworth R L 2020 Rev. Mod. Phys. 92 015004
[25] Alegre T P M, Santori C, Medeiros-Ribeiro G and Beausoleil R G 2007 Phys. Rev. B 76 165205
[26] Lagarias J C, Reeds J A, Wright M H and Wright P E 1998 SIAM Journal on Optimization 9 112
[27] Reuschel P, Agio M and Flatae A M 2022 Advanced Quantum Technologies 5 2200077
[1] Performance optimization of a SERF atomic magnetometer based on flat-top light beam
Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2024, 33(6): 060703.
[2] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
[3] Response optimization of a three-axis sensitive SERF magnetometer for closed-loop operation
Yuanrui Zhou(周原锐), Yongze Sun(孙永泽), Xixi Wang(汪茜茜), Jianan Qin(秦佳男), Xue Zhang(张雪), and Yanzhang Wang(王言章). Chin. Phys. B, 2024, 33(2): 020701.
[4] Design of tightly linked dual ring antenna and imaging of magnetic field distribution using a diamond fiber probe
Qing-Yun Ye(叶青云), Ya-Wen Xue(薛雅文), Fei-Yue He(何飞越), Xu-Tong Zhao(赵旭彤), Yu-Chen Bian(卞雨辰), Wen-Tao Lu(卢文韬), Jin-Xu Wang(王金旭), Hong-Hao Chen(陈鸿浩), Sheng-Kai Xia(夏圣开), Ming-Jing Zeng(曾明菁), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(2): 024202.
[5] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[6] Asymmetric magnetoimpedance effect and dipolar interactions of FINEMET/SiO2/FePd composite ribbons
Yong-Bin Guo(郭永斌), Dao Wang(王岛), Zhong-Min Wang(王忠民), Lei Ma(马垒), and Zhen-Jie Zhao(赵振杰). Chin. Phys. B, 2023, 32(7): 070703.
[7] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[8] A robust method for performance evaluation of the vapor cell for magnetometry
Zhi Liu(柳治), Sheng Zou(邹升), Kaifeng Yin(尹凯峰), Tao Shi(石韬),Junjian Tang(唐钧剑), and Heng Yuan(袁珩). Chin. Phys. B, 2023, 32(4): 040703.
[9] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[10] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[11] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[12] A novel demodulation method for transmission using nitrogen-vacancy-based solid-state quantum sensor
Ruixin Bai(白瑞昕), Xinyue Zhu(朱欣岳), Fan Yang(杨帆), Tianran Gao(高天然), Ziran Wang(汪子然), Linyan Yu(虞林嫣), Jinfeng Wang(汪晋锋), Li Zhou(周力), and Guanxiang Du(杜关祥). Chin. Phys. B, 2022, 31(7): 074203.
[13] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[14] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[15] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
No Suggested Reading articles found!