Special Issue:
SPECIAL TOPIC — Recent progress on kagome metals and superconductors
|
SPECIAL TOPIC — Recent progress on kagome metals and superconductors |
Prev
Next
|
|
|
Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6 |
Meng Lyu(吕孟)1, Yang Liu(刘洋)1,2, Shen Zhang(张伸)1,3, Junyan Liu(刘俊艳)1, Jinying Yang(杨金颖)1,2, Yibo Wang(王一博)1,2, Yiting Feng(冯乙婷)1,2, Xuebin Dong(董学斌)1,2, Binbin Wang(王彬彬)1, Hongxiang Wei(魏红祥)1, and Enke Liu(刘恩克)1,2,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
|
|
Abstract The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantum states, including superconductivity, quantum spin liquids, and topological electronic states. This has attracted significant interest within the field of condensed matter physics. Here, we present the observation of an anomalous Hall effect in an iron-based kagome antiferromagnet LuFe$_{6}$Sn$_{6}$, which implies a non-zero Berry curvature in this compound. By means of extensive magnetic measurements, a high Neel temperature, $T_{\rm N} = 552 $ K, and a spin reorientation behavior were identified and a simple temperature-field phase diagram was constructed. Furthermore, this compound was found to exhibit a large Sommerfeld coefficient of $\gamma = 87 $ mJ$\cdot $mol$^{-1}\cdot$K$^{-2}$, suggesting the presence of a strong electronic correlation effect. Our research indicates that LuFe$_{6}$Sn$_{6}$ is an intriguing compound that may exhibit magnetism, strong correlation, and topological states.
|
Received: 11 July 2024
Revised: 06 August 2024
Accepted manuscript online: 15 August 2024
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403400, 2019YFA0704900, and 2022YFA1403800), the Fundamental Science Center of the National Natural Science Foundation of China (Grant No. 52088101), the National Natural Science Foundation of China (Grant Nos. 11974394 and 12174426), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant No. XDB33000000), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-057), the Synergetic Extreme Condition User Facility (Grant No. SECUF), and the Scientific Instrument Developing Project of CAS (Grant No. ZDKYYQ20210003). |
Corresponding Authors:
Enke Liu
E-mail: ekliu@iphy.ac.cn
|
Cite this article:
Meng Lyu(吕孟), Yang Liu(刘洋), Shen Zhang(张伸), Junyan Liu(刘俊艳), Jinying Yang(杨金颖), Yibo Wang(王一博), Yiting Feng(冯乙婷), Xuebin Dong(董学斌), Binbin Wang(王彬彬), Hongxiang Wei(魏红祥), and Enke Liu(刘恩克) Anomalous Hall effect and electronic correlation in a spin-reoriented kagome antiferromagnet LuFe6Sn6 2024 Chin. Phys. B 33 107507
|
[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [2] Coleman P and Nevidomskyy A H 2010 J. Low Temp. Phys. 161 182 [3] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003 [4] Mielke A 1991 J. Phys. A 24 L73 [5] Provenzano P P 2020 Nat. Mater. 19 130 [6] Wang Y, Wu H, McCandless G T, Chan J Y and Ali M N 2023 Nat. Rev. Phys. 5 635 [7] Wang Q, Lei H, Qi Y and Felser C 2024 Accounts of Materials Research 5 786 [8] Zhao H, Zhang J, Lyu M, Bachus S, Tokiwa Y, Gegenwart P, Zhang S, Cheng J, Yang Y F, Chen G, Isikawa Y, Si Q, Steglich F and Sun P 2019 Nat. Phys. 15 1261 [9] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [10] Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y and Nakatsuji S 2017 Nat. Phys. 13 1085 [11] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Karel J, Komarek A C, Shekhar, Nitesh C, Kümar N, Schnelle W, Kubler J, Felser C and Parkin S S 2016 Science Advances 2 e1501870 [12] Chen T, Tomita T, Minami S, Fu M, Koretsune T, Kitatani M, Muhammad I, Nishio-Hamane D, Ishii R, Ishii F, Arita R and Nakatsuji S 2021 Nat. Commun. 12 572 [13] Mazet T and Malaman B 2000 J. Magn. Magn.c Mater. 219 33 [14] Rao X L and Coey J M D 1997 J. Appl. Phys. 81 5181 [15] Mazet T and Malaman B 2001 J. Alloy. Compd. 325 67 [16] Liu Y, Lyu M, Liu J, Zhang S, Yang J, Du Z, Wang B, Wei H and Liu E 2023 Chin. Phys. Lett. 40 047102 [17] Venturini G, Chafik B, Idrissi E and Malaman B 1991 J. Magn. Magn. Mater. 94 35 [18] Zhang X, Liu Z, Cui Q, Guo Q, Wang N, Shi L, Zhang H, Wang W, Dong X, Sun J, Dun Z and Cheng J 2022 Phys. Rev. Materials 6 105001 [19] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Zahid Hasan M 2020 Nature 583 533 [20] Avila M A, Takabatake T, Takahashi Y, Bud’ko S L and Canfield P C 2005 J. Phys.: Condens. Matter 17 6969 [21] Wu Y P, Zhao D, Wang A F, Wang N Z, Xiang Z J, Luo X G, Wu T and Chen X H 2016 Phys. Rev. Lett. 116 147001 [22] Sun Y, Zhang J, Yao T, Sun X F, Ke S H, Zhang J and Zhou S M 2023 Phys. Rev. B 107 094416 [23] Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Zhang W, Chen Q Y, Liu Y, Luo X B, Xie D H, Luo L Z, Zhang Z J and Lai X 2018 Science Advances 4 eaao6791 [24] Schnelle W, Leithe J A, Rosner H, Schappacher F M, Pöttgen R, Pielnhofer F and Weihrich R 2013 Phys. Rev. B 88 144404 [25] Tomita T, Minami S, Ikhlas M, Nakamura H, Arita R and Nakatsuji S 2022 J. Phys.: Conf. Series 2164 012065 [26] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [27] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103 [28] Bernhard J, Lebech B, Beckman O 1984 J. Phys. F: Metal Physics 14 2379 [29] Bernhard J, Lebech B, Beckman O 1988 J. Phys. F: Metal Physics 18 539 [30] Teng X, Chen L, Ye F, Rosenberg E, Liu Z, Yin J X, Jiang Y X, Oh J S, Hasan M Z, Neubauer K J, Gao B, Xie Y, Hashimoto M, Lu D, Jozwiak C, Bostwick A, Rotenberg E, Birgeneau R J, Chu J H, Yi M and Dai P 2022 Nature 609 490 [31] Chen L, Teng X, Tan H, Winn B L, Granroth G E, Ye F, Yu D H, Mole R A, Gao B, Yan B, Yi M and Dai P 2024 Nat. Commun. 15 1918 [32] Ye L, Fang S, Kang M, Kaufmann J, Lee Y, John C, Neves P M, Zhao S Y F, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Bell D C, Janson O, Comin R and Checkelsky J G 2024 Nat. Phys. 20 610 [33] Pan Y, Le C, He B, Watzman S J, Yao M, Gooth J, Heremans J P, Sun Y and Felser C 2021 Nat. Mater. 21 203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|