Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100504    DOI: 10.1088/1674-1056/ad624f
GENERAL Prev   Next  

Thermodynamics of charged AdS black hole surrounded by quintessence in restricted phase space

Siyu Jian(简思雨), Siying Long(龙思颖), Juhua Chen(陈菊华)†, and Yongjiu Wang(王永久)
Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
Abstract  We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics. This context is based on Visser's holographic thermodynamics with a fixed anti-de Sitter radius and a variable Newton constant. The conjugate variables, central charge $C$ and the chemical potential $\mu$, are introduced as a new pair of thermodynamic variables. We find that the iso-e-charge $T$-$S$ curve becomes non-monotonic when $\hat{Q}<\hat{Q}_{\rm c}$. Correspondingly, the $F$-$T$ curve exhibits a swallow tail structure. This behavior is considered as a van der Waals-like phase transition. As the value of $\hat{b}$ related to the energy density of Kiselev's fluid becomes larger, the critical temperature $T_{\rm c}$ will decrease. Thus, the van der Waals-like phase transition will occur at lower temperature. There is always a non-quilibrium transition from a small unstable black hole to a large stable black hole state in the isocoltage $T$-$S$ process. There exist a maximum and a Hawking-Page phase transition points in the $\mu$-$C$ plane. As the value of $\hat{b}$ related to Kiselev's fluid becomes larger, the Hawking-Page phase transition will occur at lower temperature in the isovoltage $\mu$-$T$ process. For other values of the state parameter $\omega$, there also exists van der Waals-like phase transition.
Keywords:  Reissner-Nordström qAdS black hole      restricted phase space      variable Newton constant  
Received:  26 April 2024      Revised:  17 June 2024      Accepted manuscript online:  12 July 2024
PACS:  05.70.-a (Thermodynamics)  
  05.70.Fh (Phase transitions: general studies)  
  04.70.-s (Physics of black holes)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12373022 and U1731107).
Corresponding Authors:  Juhua Chen     E-mail:  jhchen@hunnu.edu.cn

Cite this article: 

Siyu Jian(简思雨), Siying Long(龙思颖), Juhua Chen(陈菊华), and Yongjiu Wang(王永久) Thermodynamics of charged AdS black hole surrounded by quintessence in restricted phase space 2024 Chin. Phys. B 33 100504

[1] Bekenstein J D 1972 Eur. Phys. Lett. 4 737
[2] Bekenstein J D 1973 Phys. Rev. D 7 2333
[3] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[4] Hawking S W 1975 Commun. Math. Phys. 43 199
[5] Smarr L 1973 Phys. Rev. Lett. 30 71
[6] Wald R M 1993 Phys. Rev. D 48 R3427
[7] Kastor D, Ray S and Traschen J 2009 Class. Quantum Grav. 26 195011
[8] Dolan B P 2011 Class. Quantum Grav. 28 125020
[9] Dolan B P 2011 Class. Quantum Grav. 28 235017
[10] Kubiznak D and Mann R B 2012 J. High Energy Phys. 2012(07) 033
[11] Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys. 2013(09) 5
[12] Kubiznak D and Mann R B 2015 Can. Phys. J. 93 999
[13] Kubiznak D, Mann R B and Mae Teo 2017 Class. Quantum Grav. 34 063001
[14] Brian P Dolan 2011 Phys. Rev. D 84 127503
[15] Bhattacharya K 2023 Nucl. Phys. B 989 116130
[16] Wang P, Wu H, Yang H and Yao F 2020 J. High Energy Phys. 2020(09) 154
[17] Hendi S H and Vahidinia M H 2013 Phys. Rev. D 88 084045
[18] Estrada M and Aros R 2020 Eur. Phys. J. C 80 1
[19] Maldacena J 1999 Int. J. Theor. Phys. 38 1133
[20] Visser M R 2022 Class. Quantum Grav. 105 106014
[21] Zeyuan G and Zhao L 2022 Class. Quantum Grav. 39 075019
[22] Gao Z, Kong X and Zhao L 2022 Eur. Phys. J. C 82 112
[23] Zhao L 2022 Chin. Phys. C 46 055105
[24] Karch A and Robinson B 2015 J. High Energy Phys. 2015(12) 1
[25] Sadeghi J, Shokri M, Gashti S N and Alipour M R 2022 Gen. Relativ. Gravit. 54 129
[26] Bai Y Y, Chen X R, Xu Z M and Wu B 2023 Chin. Phys. C 47 115105
[27] Kiselev V V 2003 Class. Quantum Grav. 20 1187
[28] Minazzoli O and Harko T 2012 Phys. Rev. D 86 087502
[29] Chen S, Wang S and Su R 2008 Phys. Rev. D 77 124011
[30] Wei Y H and Chu Z H 2011 Chin. Phys. Lett. 28 100403
[31] Thomas B B, Saleh M and Kofane T C 2012 Gen. Relativ. Gravit. 44 2181
[32] Tharanath R and Kuriakose V C 2013 Mod. Phys. Lett. A 28 1350003
[33] Ghosh S G 2016 Eur. Phys. J. C 76 222
[34] Ghaderi K and Malakolkalami B 2016 Nucl. Phys. B 903 10
[35] Ma M S, Zhao R and Ma Y Q 2017 Gen. Relativ. Gravit. 49 79
[36] Xu Z and Wang J 2017 Phys. Rev. D 95 064015
[37] Saleh M, Thomas B B and Kofane T C 2018 Int. J. Theor. Phys. 57 2640
[38] Ghosh S Z, Maharaj S D, Baboolal D and Lee T H 2018 Eur. Phys. J. C 78 90
[39] Ghaffarnejad H, Yaraie E and Farsam M 2018 Int. J. Theor. Phys. 57 1671
[40] Xu W and Wu Y 2018 Eur. Lett. 121 40001
[41] Wu C H, Zou D C and Wang Y 2018 Commun. Theor. Phys. 70 459
[42] Wu Y and Xu W 2020 Phys. Dark Univ. 27 100470
[43] Yan D W, Huang Z R and Li N 2021 Chin. Phys. C 45 015104
[44] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577
[45] Alfaia R B, Lobo I P and Brito L C T 2022 Eur. Phys. J. Plus 137 402
[46] Azreg-Ainou M 2015 Eur. Phys. J. C 75 34
[47] Hong W, Mu B and Tao J 2019 Nucl. Phys. B 949 114826
[48] Guo X Y, Li H F and Zhang L C 2020 Eur. Phys. J. C 80 168
[49] Cong W, Kubiznak D and Mann R B 2021 Phys. Rev. Lett. 127 091301
[50] Lobo I P, Graca J P M, Capossoli E F and Boschi-Filho H 2022 Phys. Lett. B 835 137559
[1] Two innovative equivalent statements of the third law of thermodynamics
Xiaohang Chen(陈晓航), Yinghui Zhou(周颖慧), and Jincan Chen(陈金灿)|. Chin. Phys. B, 2024, 33(6): 060504.
[2] Simulation of optimal work extraction for quantum systems with work storage
Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2024, 33(2): 020312.
[3] Optimal driving field for multipartite quantum battery coupled with a common thermal bath
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光). Chin. Phys. B, 2023, 32(11): 110301.
[4] Quantum Stirling heat engine with squeezed thermal reservoir
Nikolaos Papadatos. Chin. Phys. B, 2023, 32(10): 100702.
[5] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[6] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽) and Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[7] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[8] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[9] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[10] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[11] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[12] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[13] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[14] Effect of transversal concentration gradient on H2-O2 cellular detonation
Cheng Wang(王成), Yi-Xuan Wu(吴易烜), Jin Huang(黄金), Wen-Hu Han(韩文虎), Qing-Guan Song(宋清官). Chin. Phys. B, 2020, 29(6): 060503.
[15] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
No Suggested Reading articles found!