|
|
Single pair of charge-2 Dirac and charge-2 Weyl phonons in GeO2 |
Dong-Chang He(何东昌)1,2, Jia-Xi Liu(刘嘉希)1,2, Pei-Tao Liu(刘培涛)1, Jiang-Xu Li(李江旭)1,†, and Xing-Qiu Chen(陈星秋)1,‡ |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
|
Abstract The presence of a pair of Weyl and Dirac points (WP-DP) in topological semimetal states is intriguing and sought after due to the effects associated with chiral topological charges. However, identifying these states in real materials poses a significant challenge. In this study, by means of first-principles calculations we predict the coexistence of charge-2 Dirac and charge-2 Weyl phonons at high-symmetry points within a noncentrosymmetric $P4_12_12$ space group. Furthermore, we propose GeO$_2$ as an ideal candidate for realizing these states. Notably, we observe two distinct surface arcs that connect the Dirac and Weyl points across the entire Brillouin zone, which could facilitate their detection in future experimental investigations. This study not only presents a tangible material for experimentalists to explore the topological properties of WP-DP states but also opens up new avenues in the quest for ideal platforms to study chiral particles.
|
Received: 21 May 2024
Revised: 19 July 2024
Accepted manuscript online: 01 August 2024
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3501503), the National Natural Science Foundation of China (Grant No. 51474202), Network and Information Foundation of CAS (Grant No. CAS-WX2021SF-0102), and the Key Project of Chinese Academy of Sciences (Grant No. ZDRW-CN-2021-2-5). J. X. Li also acknowledges the funding from China Postdoctoral Science Foundation (Grant Nos. 2022T150660 and 2021M700152). |
Corresponding Authors:
Jiang-Xu Li, Xing-Qiu Chen
E-mail: jxli15s@imr.ac.cn;xingqiu.chen@imr.ac.cn
|
Cite this article:
Dong-Chang He(何东昌), Jia-Xi Liu(刘嘉希), Pei-Tao Liu(刘培涛), Jiang-Xu Li(李江旭), and Xing-Qiu Chen(陈星秋) Single pair of charge-2 Dirac and charge-2 Weyl phonons in GeO2 2024 Chin. Phys. B 33 100301
|
[1] Haldane F D M 2017 Rev. Mod. Phys. 89 040502 [2] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [3] Goldman N, Budich J C and Zoller P 2016 Nat. Phys. 12 7 639 [4] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [5] Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [6] Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [7] Yu Z M, Zhang Z, Liu G B, Wu W, Li X P, Zhang R W, Yang S A and Yao Y G 2022 Sci. Bull. 67 375 [8] Yu Z M, Zhang Z Y, Liu G B, Wu W K, Li X P, Zhang R W, Yang S Y A and Yao Y G 2022 Sci. Bull. 67 4 [9] Li J X, Liu J X, Baronett S A, Liu M F, Wang L, Li R H, Chen Y, Li D Z, Zhu Q and Chen X Q 2021 Nat. Commun. 12 1204 [10] Liu Y Z, Zou N L, Zhao S B, Chen X B, Xu Y and Duan W H 2022 Nano Lett. 22 2120 [11] Li J X, Xie Q, Ullah S, Li R H, Ma H, Li D Z, Li Y Y and Chen X Q 2018 Phys. Rev. B 97 054305 [12] Xie Q, Li J X, Ullah S, Li R H, Wang L, Li D Z, Li Y Y, Yunoki S and Chen X Q 2019 Phys. Rev. B 99 174306 [13] Zhang T T, Song Z D, Alexandradinata A, Weng H M, Fang C, Lu L and Fang Z 2018 Phys. Rev. Lett. 120 016401 [14] Miao H, Zhang T T, Wang L, Meyers D, Said A H, Wang Y L, Shi Y G, Weng H M, Fang Z and Dean M P M 2018 Phys. Rev. Lett. 121 035302 [15] Ding G Q, Zhou F, Zhang Z Y, Yu Z M and Wang X T 2022 Phys. Rev. B 105 134303 [16] Liu Q B, Wang Z J and Fu H H 2021 Phys. Rev. B 103 L161303 [17] Liu P F, Li J, Tu X H, Li H, Zhang J, Zhang P, Gao Q and Wang B T 2021 Phys. Rev. B 103 094306 [18] Zhang T, Takahashi R, Fang C and Murakami S 2020 Phys. Rev. B 102 125148 [19] Wang R, Xia B W, Chen Z J, Zheng B B, Zhao Y J and Xu H 2020 Phys. Rev. Lett. 124 105303 [20] Huang Z Q, Chen Z J, Zheng B B and Xu H 2020 npj Comput. Mater. 6 87 [21] Xia B W, Wang R, Chen Z J, Zhao Y J and Xu H 2019 Phys. Rev. Lett. 123 065501 [22] Liu J, Hou W J, Wang E, Zhang S J, Sun J T and Meng S 2019 Phys. Rev. B 100 081204 [23] Chen Z J, Wang R, Xia B W, Zheng B B, Jin Y J, Zhao Y J and Xu H 2021 Phys. Rev. Lett. 126 185301 [24] Jin Y J, Wang R and Xu H 2018 Nano Lett. 18 7755 [25] Yang T, Xie C, Chen H, Wang X and Zhang G 2022 Phys. Rev. B 105 094310 [26] Zhong M, Liu Y, Zhou F, Kuang M, Yang T, Wang X and Zhang G 2021 Phys. Rev. B 104 085118 [27] Li J, Xie Q, Liu J, Li R, Liu M, Wang L, Li D, Li Y and Chen X Q 2020 Phys. Rev. B 101 024301 [28] Kang X Y, Li J Y, Li S 2023 Chin. Phys. B 32 116301 [29] Liu G, Jin Y, Chen Z and Xu H 2021 Phys. Rev. B 104 024304 [30] Jin Y J, Chen Z J, Xia B W, Zhao Y J, Wang R and Xu H 2018 Phys. Rev. B 98 220103 [31] Zheng B, Xia B, Wang R, Chen Z, Zhao J, Zhao Y and Xu H 2020 Phys. Rev. B 101 100303 [32] Zheng B, Zhan F, Wu X, Wang R and Fan J 2021 Phys. Rev. B 104 L060301 [33] Li J, Wang L, Liu J, Li R, Zhang Z and Chen X Q 2020 Phys. Rev. B 101 081403 [34] Liu Q B, Fu H H and Wu R 2021 Phys. Rev. B 104 045409 [35] Chen Y S, Huang F F, Zhou P, Ma Z S and Sun L Z 2021 New J. Phys. 23 103043 [36] Zhu J, Wu W, Zhao J, Chen H, Zhang L and Yang S A 2022 npj Quantum Mater. 7 2397 [37] Wang M, Wang Y, Yang Z, Fan J, Zheng B, Wang R and Wu X 2022 Phys. Rev. B 105 174309 [38] Ding G, Sun T and Wang X 2022 Phys. Chem. Chem. Phys. 24 11175 [39] Li W, Li Z, Pan B, Zhou P and Sun L 2023 Physica Status Solidi RRL 17 2300048 [40] Yang T, Gu Q J, Wang P, Wu Z M and Zhang Z Y 2022 Appl. Phys. Lett. 121 053102 [41] Zhang T T, Miao H, Wang Q, Lin J Q, Cao Y, Fabbris G, Said A H, Liu X, Lei H C, Fang Z, Weng H M and Dean M P M 2019 Phys. Rev. Lett. 123 245302 [42] Liu Q B, Fu H H and Wu R Q 2022 Phys. Chem. Chem. Phys. 24 17210 [43] Wang J H, Yuan H K, Yu Z M, Zhang Z Y and Wang X T 2022 Phys. Rev. M 5 124203 [44] Wang X T, Zhou F, Yang T, Kuang M Q, Yu Z M and Zhang G 2021 Phys. Rev. B 104 L041104 [45] Wang J H, Yuan H K, Liu Y, Zhou F, Wang X T and Zhang G 2022 Phys. Chem. Chem. Phys. 24 2752 [46] Liu Q B, Wang Z Q and Fu H H 2021 Phys. Rev. B 104 L041405 [47] Xie C W, Yuan H K, Liu Y and Wang X T 2022 Phys. Rev. B 105 054307 [48] Xie C W, Yuan H K, Liu Y, Wang X T and Zhang G 2021 Phys. Rev. B 104 134303 [49] Liu G, Huang Z Q, Chen Z J, Jin Y J, He C C and Xu H 2022 Phys. Rev. B 106 054306 [50] Liu J, Liu P, Sun Y, Chen X Q and Li J 2023 Phys. Rev. B 108 104312 [51] Weyl H 1929 Z. Physik 56 330 [52] Geilhufe R M, Borysov S S and Bouhon A 2017 Sci. Rep. 7 7298 [53] Zhang T T, Song Z D, Alexandradinata A, Weng H M, Fang C, Lu L and Fang Z 2018 Phys. Rev. Lett. 120 016401 [54] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [55] Nielsen H and Ninomiya M 1981 Phys. Lett. B 105 2 [56] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401 [57] Wang L L, Jo N H, Kuthanazhi B, Wu Y, McQueeney R J, Kaminski A and Canfield P C 2019 Phys. Rev. B 99 245147 [58] Soh J R, de Juan F, Vergniory M G, Schröter N B M, Rahn M C, Yan D Y, Jiang J, Bristow M, Reiss P, Blandy J N, Guo Y F, Shi Y G, Kim T K, McCollam A, Simon S H, Chen Y, Coldea A I and Boothroyd A T 2019 Phys. Rev. B 100 201102 [59] Wu P, Liu G, Hu X and Xu H 2023 Phys. Rev. B 108 054305 [60] Wang X, Zhou F, Zhang Z, Wu W, Yu Z M and Yang S A 2022 Phys. Rev. B 106 195129 [61] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [62] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [63] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [64] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [65] Blöchl P E 1994 Phys. Rev. B 50 17953 [66] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 17953 [67] Chaput L, Togo A, Tanaka I and Hug G 2011 Phys. Rev. B 84 094302 [68] Baroni S, Gironcoli S, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [69] Lopez Sancho M P, Lopez Sancho J M, Sancho J M L and Rubio J 1985 J. Phys. F: Metal Phys. 15 851 [70] Seifert K J, Nowotny H and Hauser E 1971 Monatshefte für Chemie 102 1006 [71] Liu Q B, Qian Y T, Fu H H and Wang Z J 2020 NPJ Comp. Mater. 6 95 [72] Wan X G, Turner M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [73] Xu R Q and Chiang T C 2005 Z. Kristallogr. 220 1009 [74] Eichler A, Bohnen K P, Reichardt W and Hafner J 1998 Phys. Rev. B 57 324 [75] Ibach H 1987 J. Vac. Sci. Technol. A 5 419 [76] Lourenço-Martins H and Kociak M 2017 Phys. Rev. X 7 041059 [77] Benedek G and Toennies J P 1994 Surf. Sci. 299 587 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|