|
Color-stable, reduced efficiency roll-off hybrid white organic light emitting diodes with ultra high brightness
Liu Bai-Quan (刘佰全), Tao Hong (陶洪), Su Yue-Ju (苏跃举), Gao Dong-Yu (高栋雨), Lan Lin-Feng (兰林锋), Zou Jian-Hua (邹建华), Peng Jun-Biao (彭俊彪)
Chin. Phys. B, 2013, 22 (7):
077303.
DOI: 10.1088/1674-1056/22/7/077303
High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/N, N, N', N'-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD): tetrafluoro-tetracyanoqino dimethane (F4-TCNQ)/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB)/4,4-N,N-dicarbazolebiphenyl (CBP): iridium (III) diazine complexes (MPPZ)2Ir(acac)/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl)benzene (DSA-ph)/bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2)/LiF/Al have been fabricated and characterized. The optimal brightness of the device is 69932 cd/m2 at a voltage of 13 V, and the Commission Internationale de l'Eclairage (CIE) chromaticity coordinates are almost constant during a large voltage change of 6-12 V. Furthermore, a current efficiency of 15.3 cd/A at an illumination-relevant brightness of 1000 cd/m2 is obtained, which rolls off slightly to 13.0 cd/A at an ultra high brightness of 50000 cd/m2. We attribute this great performance to wisely selecting an appropriate spacer together with effectively utilizing the combinations of exciton-harvested orange-phosphorescence/blue-fluorescence in the device. Undoubtedly, this is one of the most exciting results in two-wavelength HWOLEDs up to now.
|