Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070502    DOI: 10.1088/1674-1056/22/7/070502
GENERAL Prev   Next  

Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling

Hossein Gholizade-Narma, Asad Azemib, Morteza Khademic
a Faculty of Electrical, Electronic & Robotic Engineering, Shahrood University Technology, Shahrood, Iran b  College of Engineering, Penn State University, USA;
c Faculty of Engineering, Ferdowsi University of Mashhad, Iran
Abstract  In this paper, phase synchronization and the frequency of two synchronized van der Pol oscillators with delay coupling are studied. The dynamics of such a system are obtained using the describing function method, and the necessary conditions for phase synchronization are also achieved. Finding the vicinity of the synchronization frequency is the major advantage of the describing function method over other traditional methods. The equations obtained based on this method justify the phenomenon of the synchronization of coupled oscillators on a frequency either higher, between, or lower than the highest,in between, or lowest natural frequency of the aggregate oscillators. Several numerical examples simulate the different cases versus the various synchronization frequency delays.
Keywords:  van der Pol oscillator      delay coupling      phase synchronization      synchronization frequency  
Received:  08 August 2012      Revised:  09 January 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Hossein Gholizade-Narm     E-mail:  h_gholizade@yahoo.com

Cite this article: 

Hossein Gholizade-Narm, Asad Azemi, Morteza Khademi Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling 2013 Chin. Phys. B 22 070502

[1] Appleton E V 1922 Proc. Cambridge Phil. Soc. (Math. and Phys. Sci.) 21 231
[2] Li X, Ji J C and Hansen C H 2006 Mech. Res. Comm. 33 614
[3] Bu S L, Zhang Y W and Wang B H Chin. Phys. Lett. 2006 23 2909
[4] Fang J A, Tang Y, Miao Q Y and Wong W K 2011 Chin. Phys. B 20 040513
[5] Sun W, Chen Z and Chen S H 2012 Chin. Phys. B 21 050509
[6] Feng C F, Xu X J, Wu Z X and Wang Y H 2008 Chin. Phys. B 17 1951
[7] Guo L X, Xu Z Y and Hu M F 2008 Chin. Phys. B 17 836
[8] Wirkus S and Rand R 2002 Nonlinear Dynamics 30 205
[9] Reddy D V R, Sen A and Johnston G L 1998 Phys. Rev. Lett. 80 5109
[10] Sen1 A, Dodla R and Johnston G L 2005 PRAMANA Journal of Physics 64 465
[11] Huailei W, Zaihua W and Haiyan H 2004 Acta Mech. Sin. 20 426
[12] Li X, Ji J C, Hansenb C H and Tan C 2006 J. Sound Vibr. 291 644
[13] Shirahama H, Choe C U and Fukushima K 2008 The 23rd Interational Technical Conference on Circuts/Systems Computers and Communications 549
[14] Rompala K, Rand R and Howland H 2007 Communications in Nonlinear Science and Numerical Simulation 12 794
[15] Cook P A 1986 Nonlinear Dynamical Systems (Prentice Hall International)
[16] Gholizade-Narm H, Azemi A, Khademi M and Karimi-Ghartemani M 2008 J. App. Sci. 8 3175
[17] Dehaan R L and Hirakow R 1972 Exp. Cell. Res. 70 214
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[3] Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns
Gu Hua-Guang (古华光), Chen Sheng-Gen (陈胜根), Li Yu-Ye (李玉叶). Chin. Phys. B, 2015, 24(5): 050505.
[4] Collective dynamics in a non-dissipative two-coupled pendulum system
Chen Zi-Chen (陈子辰), Li Bo (李博), Qiu Hai-Bo (邱海波), Xi Xiao-Qiang (惠小强). Chin. Phys. B, 2014, 23(5): 050506.
[5] Analysis of a phase synchronized functional network based on the rhythm of brain activities
Li Ling(李凌), Jin Zhen-Lan(金贞兰), and Li Bin(李斌) . Chin. Phys. B, 2011, 20(3): 038701.
[6] Phase synchronization and its transition in two coupled bursting neurons: theoretical and numerical analysis
Wang Hai-Xia(王海侠), Lu Qi-Shao(陆启韶), and Shi Xia(石霞). Chin. Phys. B, 2010, 19(6): 060509.
[7] Phase synchronization on small-world networks with community structure
Wang Xiao-Hua(王晓华), Jiao Li-Cheng(焦李成), and Wu Jian-She(吴建设). Chin. Phys. B, 2010, 19(2): 020501.
[8] Random shortcuts induce phase synchronization in complex Chua systems
Wei Du-Qu(韦笃取), Luo Xiao-Shu(罗晓曙), and Qin Ying-Hua(覃英华). Chin. Phys. B, 2009, 18(6): 2184-2187.
[9] Complete and phase synchronization in a heterogeneous small-world neuronal network
Han Fang(韩芳), Lu Qi-Shao(陆启韶), Wiercigroch Marian, and Ji Quan-Bao(季全宝). Chin. Phys. B, 2009, 18(2): 482-488.
[10] Study on phase synchronization of stochastic chaotic system
Yang Xiao-Li(杨晓丽) and Xu Wei(徐伟). Chin. Phys. B, 2008, 17(6): 2004-2009.
[11] Phase synchronization and anti-phase synchronization of chaos for degenerate optical parametric oscillator
Feng Xiu-Qin (冯秀琴), Shen Ke (沈柯). Chin. Phys. B, 2005, 14(8): 1526-1532.
[12] Phase synchronization of Chua circuit induced by the periodic signals
Wang Shi-Hong (王世红), Liu Wei-Qing (刘维清), Ma Bao-Jun (马宝军), Xiao Jing-Hua (肖井华), Jiang Da-Ya (蒋达娅). Chin. Phys. B, 2005, 14(1): 55-60.
No Suggested Reading articles found!