Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070504    DOI: 10.1088/1674-1056/22/7/070504
GENERAL Prev   Next  

Generalized projective synchronization of two coupled complex networks with different sizes

Li Ke-Zan (李科赞)a, He En (何恩)a, Zeng Zhao-Rong (曾朝蓉)b, Chi K. Tse (谢智刚)c
a School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China;
b School of Business, Guilin University of Electronic Technology, Guilin 541004, China;
c Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Abstract  We investigate a new generalized projective synchronization (GPS) between two complex dynamical networks of different sizes. To the best of our knowledge, most current studies on the projective synchronization have dealt with coupled networks with the same size. By generalized projective synchronization, we mean that the states of nodes in each network can realize complete synchronization, and the states of pair nodes from both networks can achieve projective synchronization. By using the stability theory of dynamical system, several sufficient conditions for guaranteeing the existence of the generalized projective synchronization under feedback control and adaptive control are obtained. As an example, we use Chua's circuits to demonstrate the effectiveness of our proposed approach.
Keywords:  complex network      projective synchronization      adaptive control  
Received:  27 November 2012      Revised:  02 February 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61004101, 11161013, and 61164020) and the Natural Science Foundation of Guangxi Province, China (Grant Nos. 2011GXNSFB018059, 2011GXNSFA018136, and 2011GXNSFA018134).
Corresponding Authors:  Li Ke-Zan     E-mail:  lkzzr@guet.edu.cn

Cite this article: 

Li Ke-Zan (李科赞), He En (何恩), Zeng Zhao-Rong (曾朝蓉), Chi K. Tse (谢智刚) Generalized projective synchronization of two coupled complex networks with different sizes 2013 Chin. Phys. B 22 070504

[1] Cohen J E, Briand F and Newman C M 1990 Community Food Webs: Data and Theory (Berlin: Springer-Verlag) p. 319
[2] Floyd S and Jacobson V 1994 IEEEACM Trans. Netw. 2 122
[3] Scott J 2000 Social Network Analysis: a Handbook (London: Sage) p. 224
[4] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. E 63 066117
[5] Small M and Tse C K 2005 Int. J. Bifurcat. Chaos 15 1745
[6] Fu X, Small M and Walker D M 2008 Phys. Rev. E 77 036113
[7] Nozawa H 1992 Chaos 2 377
[8] Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[9] Duan Z, Chen G and Huang L 2008 Phys. Lett. A 372 3741
[10] Yu W, Chen G and Lü J 2009 Automatica 45 429
[11] Yu W, Chen G and Cao M 2011 IEEE Trans. Automat. Contr. 56 1436
[12] Wen G, Duan Z, Chen G and Geng X 2011 Physica A 390 4012
[13] Pecora L M and Carroll T L 1990 Nature 64 821
[14] Li Z and Han C 2002 Chin. Phys. 11 666
[15] Chen S, Zhao L and Liu J 2002 Chin. Phys. 11 543
[16] Li Y, Liu Z and Zhang J 2008 Chin. Phys. Lett. 25 874
[17] Pecora L M 1998 Phys. Rev. E 58 347
[18] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[19] Ma Z, Zhang G, Wang Y and Liu Z 2008 Chaos Soliton. Fract. 41 155101
[20] Wang K, Teng Z and Jiang H 2008 Phys. Lett. A 387 631
[21] Wu Y, Li C, Wu Y and Kurths J 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 349
[22] Liu H, Chen J, Lü J and Cao M 2010 J. Phys. A: Math. Theor. 389 1759
[23] Zheng S, Bi Q and Cai G 2009 Phys. Lett. A 373 1553
[24] Du H 2011 Chaos Soliton. Fract. 44 510
[25] Hua M, Yang Y, Xu Z, Zhang R and Guo L 2007 Phys. Lett. A 381 457
[26] Li C and Liao X 2006 Int. J. Bifurcat. Chaos 16 1041
[27] Zheng S 2012 J. Inf. Comput. Sci. 7 11
[28] Sun W and Chen Z 2010 Appl. Math. Comput. 216 2301
[29] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 15 3042
[30] Wu X and Lu H 2010 Phys. Lett. A 374 3932
[31] Li K, Small M and Fu X 2008 J. Phys. A: Math. Theor. 41 505101
[32] Lu W and Chen T 2006 Physica D 213 214
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[8] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[9] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[10] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[11] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[12] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[13] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[14] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[15] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
No Suggested Reading articles found!