Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 073601    DOI: 10.1088/1674-1056/22/7/073601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Computer study of the water–ammonia clusters formation and their dielectric properties

Alexander Galashev
Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620990, Russia
Abstract  The absorption of one to six ammonia molecules by the (H2O)50 cluster is studied by the method of molecular dynamics under near-atmospheric conditions. The capture of NH3 molecules by a water cluster produces an increase in the integrated intensity of IR absorbance, substantially decreases emission power in the frequency range of 0 ≤ ω ≤ 3500 cm-1, and transforms a continuous reflectance spectrum into a banded one. Adsorption of ammonia molecules by water clusters greatly diminishes the number of electrons that are active with respect to electromagnetic radiation. The present results are also compared with the experimental findings wherever available.
Keywords:  ammonia      water cluster      infrared absorption spectra      molecular dynamics  
Received:  06 February 2013      Revised:  04 March 2013      Accepted manuscript online: 
PACS:  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
  92.70.Cp (Atmosphere)  
  92.70.Er (Biogeochemical processes)  
Corresponding Authors:  Alexander Galashev     E-mail:  galashev@ecko.uran.ru

Cite this article: 

Alexander Galashev Computer study of the water–ammonia clusters formation and their dielectric properties 2013 Chin. Phys. B 22 073601

[1] Irwin P G J 2003 Giant Planets of Our Solar System: Atmospheres, Composition, and Structure (Berlin-Heidelberg-New York: Springer-Praxis) p. 5
[2] Turk M, Helfgen B, Hils P, Lietzow R and Schaber K 2002 Part. Part. Syst. Char. 19 327
[3] Seinfeld J H and Pandis S N 2006 Atmospheric Chemistry and Physics 2nd edn. (Hoboken: John Wiley & Sons) p. 1203
[4] Ehrenfreund P and Charnley S B 2000 Annu. Rev. Astron. Astrophys. 38 427
[5] Devlin J P, Joyce C and Buch V 2000 J. Phys. Chem. A 104 1974
[6] Galashev A E and Rakhmanova O R 2012 Chin. Phys. B 21 113602
[7] Van Thiel M, Becker E D and Pimentel G C 1957 J. Chem Phys. 27 486
[8] Hartmann M, Miller R E, Toennies J P and Vilesov A 1995 Phys. Rev. Lett. 75 1566
[9] Dang L X and Chang T M 1997 J. Chem. Phys.106 8149
[10] Jorgensen W L and Madura J D 1983 J. Am. Chem. Soc. 105 1407
[11] Galashev A Y 2011 Can. J. Chem. 89 524
[12] New M H and Berne B J 1995 J. Am. Chem. Soc. 117 7172
[13] Nikolskii B P 1971 The Chemists Book (Leningrad: Himiya) p. 204
[14] Haile J M 1992 Molecular Dynamics Simulation. Elementary Methods (New York: Wiley) p. 162
[15] Landau L D and Lifshitz E M 1982 Electrodynamics of Continuous Media (Moscow: Nauka) p. 407
[16] Prokhorov A M 1988 Physical Encyclopedia (Moscow: Sovetskaya Entciklopediya) p. 702
[17] Koshlaykov V N 1985 Problems of Solid Body Dynamics and Applied Theory of Gyroscopes (Moscow: Nauka) p. 14
[18] Sonnenschein R J 1985 J. Comput. Phys. 59 347
[19] Bresme F 2001 J. Chem. Phys. 115 7564
[20] Neumann M 1985 J. Chem. Phys. 82 5663
[21] Bosma W B, Fried L E and Mukamel S 1993 J. Chem. Phys. 98 4413
[22] Stern H A and Berne B J 2001 J. Chem. Phys. 115 7622
[23] Lemberg H L and Stillinger F H 1975 J. Chem. Phys. 62 1677
[24] Rahman A, Stillinger F H and Lemberg H L 1975 J. Chem. Phys. 63 5223
[25] Saint-Martin H, Hess B and Berendsen H J C 2004 J. Chem. Phys. 120 11133
[26] Goggin P L and Carr C 1986 Water and Aqueous Solutions (Bristol: Adam Hilger) p. 149
[27] Kleiner I, Brown R L, Tarrago G, Kou Q L, Picqué N, Guelachvili G, Danad V and Mandind J Y 1999 J. Mol. Spectrosc. 193 46
[1] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[9] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[10] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[11] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[12] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
No Suggested Reading articles found!