Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070503    DOI: 10.1088/1674-1056/22/7/070503
GENERAL Prev   Next  

Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance

Wang Shu-Guo (王树国)a, Zheng Song (郑松)b
a Department of Mathematics and Physics, Changzhou Campus, Hohai University, Changzhou 213022, China;
b School of Mathematics and Statistics, Zhejiang University of Finance & Economics, Hangzhou 310018, China
Abstract  We investigate the problem of function projective synchronization (FPS) in drive-response dynamical networks with non-identical nodes, an adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only unknown parameters of the networks are estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions but also unknown bounded disturbances can be simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.
Keywords:  complex networks      function projective synchronization      disturbance adaptive control  
Received:  25 July 2012      Revised:  04 September 2012      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 70871056) and the Fundamental Research Funds for the Central Universities,China (Grant No. 2013B10014).
Corresponding Authors:  Wang Shu-Guo     E-mail:  wsg97@163.com

Cite this article: 

Wang Shu-Guo (王树国), Zheng Song (郑松) Adaptive function projective synchronization of uncertain complex dynamical networks with disturbance 2013 Chin. Phys. B 22 070503

[1] Wen G H, Duan Z S, Li Z K and Chen G R 2012 International Journal of Control 85 384
[2] Wen G H, Duan Z S, Yu W W and Chen G R 2012 International Journal of Robust and Nonlinear Control 23 602
[3] Xiong X and Hu Y 2012 Acta Phys. Sin. 61 150509 (in Chinese)
[4] Chou S W, Wang K and Liu Q 2012 Acta Phys. Sin. 61 150201 (in Chinese)
[5] Hao C Q, Wang J and Deng B 2012 Acta Phys. Sin. 61 148901 (in Chinese)
[6] Zhang C, Shen H Z and Li F 2012 Acta Phys. Sin. 61 148902 (in Chinese)
[7] Wang D L and Yu Z G 2012 Chin. Phys. B 21 080504
[8] Gao X Y, An H Z and Fang W 2012 Acta Phys. Sin. 61 098902 (in Chinese)
[9] Wang Y Q and Yang X Y 2012 Acta Phys. Sin. 61 090202 (in Chinese)
[10] Wang S G and Yao H X 2012 Chin. Phys. B 21 050508
[11] Liang Y and Wang X Y 2012 Acta Phys. Sin. 61 038901 (in Chinese)
[12] Chai Y, Lv L and Chen L Q 2012 Chin. Phys. B 21 030506
[13] Yang C L and Tang K S 2011 Chin. Phys. B 20 128901
[14] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[15] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 4193
[16] Xu S Y and Yang Y 2010 Nonlinear Dynamics 59 485
[17] Wang J L and Wu H N 2012 Nonlinear Dynamics 67 497
[18] Lü L, Meng L, Guo L, Zou J R and Yang M 2011 Acta Phys. Sin. 60 124 (in Chinese)
[19] Abdurahman K, Wang X Y and Zhao Y Z 2011 Acta Phys. Sin. 60 81 (in Chinese)
[20] Liu H, Chen J, Lu J and Cao M 2010 Physica A 389 1759
[21] Guo W 2011 Nonlinear Analysis: Real World Applications 12 2579
[22] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dynamics 62 875
[23] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[24] Chen Y and Li X 2007 Int. J. Mod. Phys. C 18 883
[25] Chen Y, An H L and Li Z B 2008 Appl. Math. Comput. 197 96
[26] Du H, Zeng Q and Wang C 2009 Chaos Soliton. Fract. 42 2399
[27] Sebastian S K and Sabir M 2010 Phys. Lett. A 374 2017
[28] Yang W and Sun J 2010 Phys. Lett. A 374 557
[29] Sudheer K S and Sabir M 2009 Phys. Lett. A 373 1847
[30] Du H Y, Zeng Q S, Wang C H and Ling M X 2010 Nonlinear Analysis: Real World Applications 11 705
[31] Du H Y, Zeng Q S and Wang C H 2008 Phys. Lett. A 372 5402
[32] Shen L Q, Liu W Y and Ma J W 2009 Chaos Soliton. Fract. 42 1292
[33] Zhang R, Yang Y Q, Xu Z Y and Hu M F 2010 Phys. Lett. A 374 3025
[34] Solís-Perales G Ruiz-Velázquez E and Valle-Rodríguez D 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 2528
[35] Du H Y 2011 Chaos Soliton. Fract. 44 510
[36] Ji D H, Jeong S C, Park J H, Lee S M and Won S C 2012 Applied Mathematics and Computation 218 4872
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!