Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070303    DOI: 10.1088/1674-1056/22/7/070303
GENERAL Prev   Next  

Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions

Sami Ortakaya
Institute of Natural and Applied Sciences, Department of Physics, Erciyes University, 38039 Kayseri, Turkiye
Abstract  The exact solutions of the N-dimensional Klein-Gordon equation in the presence of an exactly solvable potential of V(r) = De(r/re-re/r)2 type have been obtained. The N dimensional Klein-Gordon equation has been reduced to a first-order differential equation via Laplace transformation. The exact bound state energy eigenvalues and corresponding wave functions for CH, H2, and HCl molecules interacting with pseudoharmonic oscillator potential in the arbitrary N dimensions have been determined. Bound state eigenfunctions used in applications related to molecular spectroscopy are obtained in terms of confluent hypergeometric functions.
Keywords:  Klein-Gordon equation      Laplace integral transform      bound states  
Received:  07 September 2012      Revised:  03 December 2012      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Fd (Algebraic methods)  
Corresponding Authors:  Sami Ortakaya     E-mail:  sami.ortakaya@yahoo.com

Cite this article: 

Sami Ortakaya Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions 2013 Chin. Phys. B 22 070303

[1] Hutson J M, Jain S. 1989 J. Chem. Phys. 91 4197
[2] Blume D, Greene C H and Esry B D 2000 J. Chem. Phys. 113 2145
[3] Espinola Lopez L E and Soares Neto J J 2002 Int. J. Theor. Phys. 39 1129
[4] Coelho J A and Amaral R L P G 2002 J. Phys. A: Math. Gen. 35 5255
[5] Lévai G, Kónya B and Papp Z 1998 J. Math. Phys. 39 5811
[6] Zeng G, Zhou S, Ao S and Jiang F 1997 J. Phys. A: Math. Gen. 30 1775
[7] Durmus A 2011 J. Phys. A: Math. Theor. 44 155205
[8] Ikhdair S and Sever R 2009 J. Math. Chem. 45 1137
[9] Ikhdair S and Sever R 2008 Cent. Eur. J. Phys. 6 685
[10] Ikhdair S and Sever R 2008 J. Mol. Struct.: Theochem 855 13
[11] Oyewumi K J 2005 Found. Phys. Lett. 18 75
[12] Saad N 2007 Phys. Scr. 76 623
[13] Saad N, Hall R L and Ciftci H 2008 Cent. Eur. J. Phys. 6 717
[14] Goldman I and Krivchenkov V 1960 Problems in Quantum Mechanics (London: Pergamon Press)
[15] Dong S H and Ma Z Q 2002 Int. J. Mod. Phys. E 11 155
[16] Sage M 1984 Chem. Phys. 87 431
[17] Sage M and Goodisman J 1985 Am. J. Phys. 53 530
[18] Buyukkilic F, Demirhan D and Ozeren S 1992 Chem. Phys. Lett. 9 194
[19] Popov D 2001 J. Phys. A: Math. Gen. 34 5283
[20] Ikhdair S and Sever R 2007 J. Mol. Struct.: Theochem 806 155
[21] Wang L Y, Gu X Y, Ma Z Q and Dong S H 2002 Found. Phys. Lett. 15 569
[22] Oyewumi K J, Akinpelu F O and Agboola A D 2008 Int. J. Theor. Phys. 47 1039
[23] Schiff J L 1999 The Laplace Transform: Theory and Applications (New York: Springer)
[24] Chen G 2004 Phys. Lett. A 328 123
[1] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[2] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[3] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[4] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[5] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[6] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[7] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[8] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[9] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[10] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[11] Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states
Su-Xin Wang(王素新), Yu-Xian Li(李玉现), Jian-Jun Liu(刘建军). Chin. Phys. B, 2016, 25(3): 037304.
[12] Particle-hole bound states of dipolar molecules in an optical lattice
Zhang Yi-Cai (张义财), Wang Han-Ting (汪汉廷), Shen Shun-Qing (沈顺清), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2013, 22(9): 090501.
[13] Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential
Guo-Hua Sun, M. Avila Aoki, Shi-Hai Dong. Chin. Phys. B, 2013, 22(5): 050302.
[14] Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring
Wu Li-Jun (吴丽君), Han Yu (韩宇). Chin. Phys. B, 2013, 22(4): 047302.
[15] Spinless particles in the field of unequal scalar–vector Yukawa potentials
M. Hamzavi, S. M. Ikhdair, K. E. Thylwe. Chin. Phys. B, 2013, 22(4): 040301.
No Suggested Reading articles found!