|
|
Ultraviolet emissions realized in ZnO via avalanche multiplication process |
Yu Ji (于吉)a b, Shan Chong-Xin (单崇新)a, Shen He (申赫)a b, Zhang Xiang-Wei (张祥伟)a b, Wang Shuang-Peng (王双鹏)a, Shen De-Zhen (申德振)a |
a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Au/MgO/ZnO/MgO/Au structures have been designed and constructed in this study. Under a bias voltage, a carrier avalanche multiplication will occur via an impact ionization process in the MgO layer. The generated holes will be drifted into the ZnO layer, and recombine radiatively with the electrons in the ZnO layer, thus obvious emissions at around 387 nm coming from the near-band-edge emission of ZnO will be observed. The results reported in this paper demonstrate the ultraviolet (UV) emission realized via a carrier multiplication process, thus may provide an alternative route to efficient UV emissions by bypassing the challenging p-type doping issues of ZnO.
|
Received: 26 February 2013
Revised: 30 March 2013
Accepted manuscript online:
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
85.60.Jb
|
(Light-emitting devices)
|
|
73.61.Ga
|
(II-VI semiconductors)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB302005), the National Natural Science Foundation of China (Grant Nos. 11074248, 11104265, 11134009, and 61177040), and the Science and Technology Developing Project of Jilin Province, China (Grant No. 20111801). |
Corresponding Authors:
Shan Chong-Xin
E-mail: shancx@ciomp.ac.cn
|
Cite this article:
Yu Ji (于吉), Shan Chong-Xin (单崇新), Shen He (申赫), Zhang Xiang-Wei (张祥伟), Wang Shuang-Peng (王双鹏), Shen De-Zhen (申德振) Ultraviolet emissions realized in ZnO via avalanche multiplication process 2013 Chin. Phys. B 22 077307
|
[1] |
Khan A, Balakrishnan K and Katona T 2008 Nat. Photon. 2 77
|
[2] |
Simon J, Protasenko V, Lian C, Xing H and Jena D 2010 Science 327 60
|
[3] |
Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
|
[4] |
Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W and Tang Z K 2006 Appl. Phys. Lett. 88 031911
|
[5] |
Yan Q R, Yan Q A, Shi P P, Niu Q L, Li S T and Zhang Y 2013 Chin. Phys. B 22 026102
|
[6] |
Zhang S, Wang X P, Wang L J, Zhu Y Z, Mei C Y, Liu X X, Li H H and Gu Y Z 2010 Chin. Phys. B 19 097805
|
[7] |
Feng Q J, Jiang J Y, Tang K, Lu J Y, Liu Y, Li R, Guo H Y, Xu K, Song Z and Li M K 2013 Acta Phys. Sin. 62 057802 (in Chinese)
|
[8] |
Yan Q R, Zhang Y, Yan Q A, Shi P P, Zheng S W, Niu Q L, Li S T and Fan G H 2012 Acta Phys. Sin. 61 036103 (in Chinese)
|
[9] |
Wang F F, Cao L, Liu R B, Pan A L and Zou B S 2007 Chin. Phys. 16 1790
|
[10] |
Zhu H, Shan C X, Li B H, Zhang Z Z, Yao B and Shen D Z 2011 Appl. Phys. Lett. 99 101110
|
[11] |
Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Stat. Sol. A 201 2203
|
[12] |
Ni P N, Shan C X, Wang S P, Li B H, Zhang Z Z and Shen D Z 2012 Opt. Lett. 37 1568
|
[13] |
Ma X Y, Chen P L, Li D S, Zhang Y Y and Yang D R 2007 Appl. Phys. Lett. 91 251109
|
[14] |
Chen P L, Ma X Y and Yang D R 2006 Appl. Phys. Lett. 89 111112
|
[15] |
Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X H and Choy K L 2010 Adv. Mater. 22 1877
|
[16] |
Chen P L, Ma X Y, Li D S, Zhang Y Y and Yang D R 2007 Appl. Phys. Lett. 90 251115
|
[17] |
Yu J, Shan C X, Qiao Q, Xie X H, Zhang Z Z, Wang S P and Shen D Z 2012 Sensors 12 1280
|
[18] |
Cheng J B, Zhang B, Duan B X and Li Z J 2008 Chin. Phys. Lett. 25 262
|
[19] |
Ren H X and Hao Y 2001 Chin. Phys. 10 189
|
[20] |
Xu X B, Zhang H M, Hu H Y, Li Y C and Qu J T 2011 Chin. Phys. B 20 108502
|
[21] |
Xie F, Lu H, Chen D J, Xiu X Q, Zhao H, Zhang R and Zheng Y D 2011 IEEE Electron Dev. Lett. 32 1260
|
[22] |
McClintock R, Yasan A, Minder K, Kung P and Razeghi M 2005 Appl. Phys. Lett. 87 241123
|
[23] |
Sze S M, Coleman D J and Loya A 1971 Solid-State Electron 14 1209
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|