Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074204    DOI: 10.1088/1674-1056/22/7/074204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses

Li Pan (李磐), Shi Lei (时雷), Mao Qing-He (毛庆和)
Anhui Provincial Key Laboratory of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The supercontinuum (SC) generations in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be achieved by pumping the ANDi PCF with picosecond pump pulses. However, the PCF length required may have to be lengthened to several tens of centimeters, which is much longer than that with femtosecond pump pulses. The relatively long PCF gives rise to much higher Raman gain and stronger Raman frequency shift compared to those with femtosecond pump pulses, which in turn not only cause a distorted temporal waveform and an un-flatted spectrum, but also severely degrade the coherence of the generated SC.
Keywords:  supercontinuum generation      photonic crystal fibers      optical wave breaking  
Received:  22 January 2013      Revised:  21 March 2013      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA030203), the National Natural Science Foundation of China (Grant No. 61250017), and the Key Research Program of the Chinese Academy Sciences (Grant No. KJZD-EW-W02).
Corresponding Authors:  Mao Qing-He     E-mail:  mqinghe@aiofm.ac.cn

Cite this article: 

Li Pan (李磐), Shi Lei (时雷), Mao Qing-He (毛庆和) Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses 2013 Chin. Phys. B 22 074204

[1] Udem T, Holzwarth R and Hänsch T W 2002 Nature 416 233
[2] Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, DrexlerW, Apolonski A, WadsworthWJ, Knight J C, Russell P S, Vetterlein M and Scherzer E 2002 Opt. Lett. 27 1800
[3] Paulsen H N, Hilligse K M, Thogersen J, Keiding S R and Larsen J J 2003 Opt. Lett. 28 1123
[4] Rinia H A, Bonn M, Müller M and Vartiainen E M 2007 Chem. Phys. Chem. 8 279
[5] Schenkel B, Paschotta R and Keller U 2005 J. Opt. Soc. Am. B 22 687
[6] Agrawal G P 2011 J. Opt. Soc. Am. B 28 A1
[7] Duan L N, Xueming L, Wang L R, Mao D and Wang G X 2011 Laser Phys. 21 1813
[8] Lu H, Liu X M, Gong Y K, Hu X H and Li X H 2010 J. Opt. Soc. Am. B 27 904
[9] Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P St J, Omenetto F G, Efimov A and Taylor A J 2003 Nature 424 511
[10] Dudley J M and Taylor J R 2009 Nature Photon. 3 85
[11] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[12] Rulkov A B, Vyatkin M Y, Popov S V, Taylor J R and Gapontsev V P 2005 Opt. Express 13 377
[13] Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 054210
[14] Dudley J M and Coen S 2006 Rev. Mod. Phys. 78 1135
[15] Agrawal G P 2007 Nonlinear Fiber Optics (4rd edn.) (New York: Academic)
[16] Gu X, Kimmel M, Shreenath A, Trebino R, Dudley J M, Coen S and Windeler R 2003 Opt. Express 11 2697
[17] Genty G, Coen S and Dudley J M 2007 Opt. Soc. Am. B 24 1771
[18] Heidt A M 2010 J. Opt. Soc. Am. B 27 550
[19] Heidt A M, Hartung A, Bosman G W, Krok P, Rohwer E G, Schwoerer H and Bartelt H 2011 Opt. Express 19 3775
[20] Hooper L E, Mosley P J, Muir A C, Wadsworth W J and Knight J C 2011 Opt. Express 19 4902
[21] Stolen R H, Gordon J P, Tomlinson W J and Haus H A 1989 J. Opt. Soc. Am. B 6 1159
[22] Xueming L and Byoungho L 2003 IEEE Photonic Tech. Lett. 15 1549
[23] Hult J 2008 J. Lightwave Technol. 25 3770
[24] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Optical Fibers (Cambridge: Cambridge University Press)
[25] Tu H, Liu Y, Lægsgaard J, Sharma U, Siegel M, Kopf D and Boppart S A 2010 Opt. Express 18 27872
[26] Anderson D, Desaix M, Lisak M and Quiroga-Teixeiro M L 1992 J. Opt. Soc. Am. B 9 1358
[27] Finot C, Kibler B, Provost L and Wabnitz S 2008 J. Opt. Soc. Am. B 25 1938
[28] Fang X H, Hu M L, Chen X, Song Y J, Chai L and Wang C Y 2011 Opt. Lett. 36 1005
[29] Song Y J, Hu M L, Xie C, Chai L and Wang Q Y 2010 Acta Phys. Sin. 59 7105 (in Chinese)
[1] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[2] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[3] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[4] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[5] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[6] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[7] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[8] Supercontinuum manipulation based on the influence of chirp on soliton spectral tunneling
Saili Zhao(赵赛丽), Huan Yang(杨华), Yilin Zhao(赵奕霖), Yuzhe Xiao(肖宇哲). Chin. Phys. B, 2018, 27(11): 114219.
[9] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[10] Numerical investigation on broadband mid-infrared supercontinuum generation in chalcogenide suspended-core fibers
Kundong Mo(莫坤东), Bo Zhai(翟波), Jianfeng Li(李剑峰), E Coscelli, F Poli, A Cucinotta, S Selleri, Chen Wei(韦晨), Yong Liu(刘永). Chin. Phys. B, 2017, 26(5): 054216.
[11] Photonic crystal fiber polarization filter with two large apertures coated with gold layers
Jun-Jun Wu(吴君君), Shu-Guang Li(李曙光), Qiang Liu(刘强), Min Shi(石敏). Chin. Phys. B, 2017, 26(11): 114209.
[12] Gamma-radiation effects in pure-silica-core photonic crystal fiber
Wei Cai(蔡伟), Ningfang Song(宋凝芳), Jing Jin(金靖), Jingming Song(宋镜明), Wei Li(李伟), Wenyong Luo(罗文勇), Xiaobin Xu(徐小斌). Chin. Phys. B, 2017, 26(11): 114211.
[13] Surface plasmon resonance-induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers
Yingchao Liu(刘英超), Hailiang Chen(陈海良), Shuguang Li(李曙光), Qiang Liu(刘强), Jianshe Li(李建设). Chin. Phys. B, 2017, 26(10): 104211.
[14] Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber
Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044208.
[15] Ultrashort pulse breaking in optical fiber with third-order dispersion and quintic nonlinearity
Zhong Xian-Qiong (钟先琼), Zhang Xiao-Xia (张晓霞), Cheng Ke (程科), Xiang An-Ping (向安平). Chin. Phys. B, 2014, 23(6): 064207.
No Suggested Reading articles found!