ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Two-dimensional atom localization via probe absorption in a four-level atomic system |
Wang Zhi-Ping (王志平)a, Ge Qiang (葛强)a b, Ruan Yu-Hua (阮于华)a, Yu Ben-Li (俞本立)a |
a Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, Hefei 230601, China; b School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China |
|
|
Abstract We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization.
|
Received: 05 September 2012
Revised: 21 November 2012
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11205001), the National Basic Research Program of China (Grant No. 2010CB234607), and the Postdoctoral Science Foundation of Anhui University, China. |
Corresponding Authors:
Wang Zhi-Ping
E-mail: zhipwang@126.com
|
Cite this article:
Wang Zhi-Ping (王志平), Ge Qiang (葛强), Ruan Yu-Hua (阮于华), Yu Ben-Li (俞本立) Two-dimensional atom localization via probe absorption in a four-level atomic system 2013 Chin. Phys. B 22 074203
|
[1] |
Phillips W D 1998 Rev. Mod. Phys. 70 721
|
[2] |
Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
|
[3] |
Storey P, Collett M and Walls D F 1992 Phys. Rev. Lett. 68 472
|
[4] |
Kunze S, Dieckmann K and Rempe G 1997 Phys. Rev. Lett. 78 2038
|
[5] |
Thomas J E and Wang L J 1995 Phys. Rep. 262 311
|
[6] |
Harris S E 1997 Phys. Today 50 36
|
[7] |
Fleischhauer M, Imamoğlu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
|
[8] |
Gao J, Wang J, Zhang T C, Wang J M and Yang B D 2011 Acta Phys. Sin. 60 114207
|
[9] |
Harris S E 1989 Phys. Rev. Lett. 62 1033
|
[10] |
Wu J H, Wang D P, Zhang H F, Xiao Z H and Gao J Y 2003 Chin. Phys. B 12 39
|
[11] |
Zhu S Y, Chen H and Huang H 1997 Phys. Rev. Lett. 79 205
|
[12] |
Paspalakis E, Keitel C H and Knight P L 1998 Phys. Rev. A 58 4868
|
[13] |
Yang X X and Wu Y 2003 Chin. Phys. Lett. 20 1736
|
[14] |
Wu Y and Yang X 2004 Phys. Rev. A 70 053818
|
[15] |
Zhang Y, Khadka U, Anderson B and Xiao M 2009 Phys. Rev. Lett. 102 013601
|
[16] |
Wang H, Goorskey D and Xiao M 2001 Phys. Rev. Lett. 87 073601
|
[17] |
Niu Y P and Gong S Q 2006 Phys. Rev. A 73 053811
|
[18] |
Wu Y and Deng L 2004 Opt. Lett. 29 2064
|
[19] |
Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
|
[20] |
Yang W X, Chen A X, Lee R K and Wu Y 2011 Phys. Rev. A 84 013835
|
[21] |
Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 063806
|
[22] |
Paspalakis E and Knight P L 2001 Phys. Rev. A 63 065802
|
[23] |
Sahrai M, Tajalli H, Kapale K T and Zubairy M S 2005 Phys. Rev. A 72 013820
|
[24] |
Kapale K T and Zubairy M S 2006 Phys. Rev. A 73 023813
|
[25] |
Liu C P, Gong S Q, Cheng D C, Fan X J and Xu Z Z 2006 Phys. Rev. A 73 025801
|
[26] |
Cheng D, Niu Y, Li R and Gong S 2006 J. Opt. Soc. Am. B 23 2180
|
[27] |
Agarwal G S and Kapale K T 2006 J. Phys. B 39 3437
|
[28] |
Macovei M, Evers J, Keitel C H and Zubairy M S 2007 Phys. Rev. A 75 033801
|
[29] |
Xu J and Hu X M 2007 Phys. Rev. A 76 013830
|
[30] |
Qamar S, Mehmood A and Qamar S 2009 Phys. Rev. A 79 033848
|
[31] |
Wang Z and Jiang J 2010 Rev. Lett. A 374 4853
|
[32] |
Proite N A, Simmons Z J and Yavuz D D 2011 Phys. Rev. A 83 041803
|
[33] |
Ivanov V and Rozhdestvensky Y 2010 Phys. Rev. A 81 033809
|
[34] |
Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 J. Opt. Soc. Am. B 28 622
|
[35] |
Ding C, Li J, Zhan Z and Yang X 2011 Phys. Rev. A 83 063834
|
[36] |
Wan R G, Kou J, Jiang L, Jiang Y and Gao J Y 2011 J. Opt. Soc. Am. B 28 10
|
[37] |
Wang Z, Yu B, Zhu J, Cao Z, Zhen S, Wu X and Xu F 2012 Ann. Phys. 327 1132
|
[38] |
Ding C, Li J, Yu R, Hao X and Wu Y 2012 Opt. Express 20 7870
|
[39] |
Li J, Yu R, Liu M, Ding C and Yang X 2011 Phys. Lett. A 375 3978
|
[40] |
Ding C, Li J, Yang X, Zhang D and Xiong H 2011 Phys. Rev. A 84 043840
|
[41] |
Ding C, Li J, Yang X, Zhan Z and Liu J B 2011 J. Phys. B 44 145501
|
[42] |
Steck D 2010 87Rb D line data http://steck.us/alkalidata
|
[43] |
Yan M, Rickey E G and Zhu Y 2001 J. Opt. Soc. Am. B 18 1057
|
[44] |
Jha P K, Rostovtsev Y V, Li H, Sautenkov V A and Scully M O 2011 Phys. Rev. A 83 033404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|