Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077803    DOI: 10.1088/1674-1056/22/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photo-induced absorption in pump probe spectroscopy of single-walled carbon nanotubes

Zhu Zi-Peng (朱子鹏)
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in single-walled carbon nanotube transient spectrum. The two advantages of the experiment, a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species, greatly facilitate the identification of the photo-induced absorption signal of one tube species. It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the E11 state. This finding prompts a new explanation for the origin of the photo-induced absorption: the transition from the ground state to a phonon coupled state near the Eii state. The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals, which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes. The finding shed some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.
Keywords:  photo-induced absorption      ultrafast spectroscopy      carbon nanotubes  
Received:  22 January 2013      Revised:  25 February 2013      Accepted manuscript online: 
PACS:  78.67.Ch (Nanotubes)  
  42.65.-k (Nonlinear optics)  
  78.47.-p (Spectroscopy of solid state dynamics)  
Fund: Project supported by the U.S. National Science Foundation (Grant No. DMR0606505).
Corresponding Authors:  Zhu Zi-Peng     E-mail:  zipeng zhu@yahoo.com

Cite this article: 

Zhu Zi-Peng (朱子鹏) Photo-induced absorption in pump probe spectroscopy of single-walled carbon nanotubes 2013 Chin. Phys. B 22 077803

[1] Iijima S 1991 Nature 354 56
[2] Collins P G and Avouris P 2000 Scientific American 283 62
[3] Long Y B, Song L, Zhang C Y, Wang L, Fu P M, Zhang Z G, Xie S S and Wang G P 2005 Chin. Phys. 14 2137
[4] Yang J, Dong Q L, Jiang Z T and Zhang J 2010 Chin. Phys. B 19 127104
[5] Miao L, Liu H J, Hu Y, Zhou X, Hu C Z and Shi J 2010 Chin. Phys. B 19 016301
[6] Lauret J S, Voisin C, Gassabois G, Delalande C, Roussignol P, Jost O and Capeset L 2003 Phys. Rev. Lett. 90 057404
[7] Korovyanko O J, Sheng C X, Vardeny Z V, Dalton A B and Baughman R H 2004 Phys. Rev. Lett. 92 017403
[8] Styers-Barnett D J, Ellison S P, Park C, Wise K E and Papanikolas J M 2005 J. Phys. Chem. A 109 289
[9] Pedersen T G, Pedersen K, Cornean H D and Duclos P 2005 Nano Lett. 5 291
[10] Ostojic G N, Zaric S, Kono J, Moore V C, Hauge R H and Smalley R E 2005 Phys. Rev. Lett. 94 097401
[11] Zhu Z, Crochet J, Arnold M S, Hersam M C, Ulbricht H, Resasco D and Hertel T 2007 J. Phys. Chem. C 111 3831
[12] Gao B, Hartland G V and Huang L 2012 ACS Nano 6 5083
[13] Huang L, Pedrosa H N and Krauss T D 2004 Phys. Rew. Lett. 93 017403
[14] Huang L and Krauss T D 2006 Phys. Rev. Lett. 96 057407
[15] Russo R M, Mele E J Kane C L, Rubtsov I V, Therien M J and Luzzi D E 2006 Phys. Rev. B 74 041405(R)
[16] Resasco D E, Alvarez W E, Pompeo F, Balzano L, Herrera J E, Kitiyanan B and Borgna A 2002 J. Nanoparticle Res. 4 131
[17] Arnold M S, Stupp S I and Hersam M C 2005 Nano Lett. 5 713
[18] Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E and Weisman R B 2002 Science 298 2361
[19] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press)
[20] Wang F, Dukovic G, Brus L E and Heinz T F 2005 Science 308 838
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[4] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[7] Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
Lixin He(何立新), Xiaosong Zhu(祝晓松), Wei Cao(曹伟), Pengfei Lan(兰鹏飞), and Peixiang Lu(陆培祥). Chin. Phys. B, 2022, 31(12): 123301.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Optical study on topological superconductor candidate Sr-doped Bi2Se3
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳). Chin. Phys. B, 2022, 31(11): 117402.
[10] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[11] Steady and transient behavior of perylene under high pressure
Ting-Ting Wang(王亭亭), Yu Zhang(张宇), Hong-Yu Tu(屠宏宇), Lu Han(韩露), Ji-Chao Cheng(程基超), Xin Wang(王鑫), Fang-Fei Li(李芳菲), Ling-Yun Pan(潘凌云), and Tian Cui(崔田). Chin. Phys. B, 2021, 30(11): 118201.
[12] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[13] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[14] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[15] Femtosecond laser user facility for application research on ultrafast science
Zhaohua Wang(王兆华), Shaobo Fang(方少波), Hao Teng(滕浩), Hainian Han(韩海年), Xinkui He(贺新奎), Zhiyi Wei(魏志义). Chin. Phys. B, 2018, 27(7): 074204.
No Suggested Reading articles found!