Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 078102    DOI: 10.1088/1674-1056/22/7/078102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influences of high-temperature annealing on atomic layer deposited Al2O3/4H-SiC

Wang Yi-Yu (王弋宇)a, Shen Hua-Jun (申华军)a, Bai Yun (白云)a, Tang Yi-Dan (汤益丹)a, Liu Ke-An (刘可安)b, Li Cheng-Zhan (李诚瞻)b, Liu Xin-Yu (刘新宇)a
a Department of Microwave Device and Integrated Circuit, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, Chinal;
b Zhuzhou CSR Times Electric Co. Ltd., Zhuzhou 412001, China
Abstract  High-temperature annealing of atomic layer deposition (ALD) of Al2O3 films on 4H-SiC in O2 atmosphere is studied with temperature ranging from 800℃ to 1000℃. It is observed that the surface morphology of Al2O3 films annealed at 800℃ and 900℃ is pretty good, while the surface of the sample annealed at 1000℃ becomes bumpy. Grazing incidence X-ray diffraction (GIXRD) measurements demonstrate that the as-grown films are amorphous and begin to crystallize at 900℃. Furthermore, C-V measurements exhibit improved interface characterization after annealing, especially for samples annealed at 900℃ and 1000℃. It is indicated that high-temperature annealing in O2 atmosphere can improve the interface of Al2O3/SiC and annealing at 900℃ would be an optimum condition for surface morphology, dielectric quality, and interface states.
Keywords:  Al2O3      SiC      high-temperature annealing      crystallize  
Received:  07 November 2012      Revised:  31 January 2013      Accepted manuscript online: 
PACS:  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61106080) and the Major Program of the National Natural Science Foundation of China (Grant No. 2013ZX02305).
Corresponding Authors:  Shen Hua-Jun     E-mail:  shenhuajun@ime.ac.cn

Cite this article: 

Wang Yi-Yu (王弋宇), Shen Hua-Jun (申华军), Bai Yun (白云), Tang Yi-Dan (汤益丹), Liu Ke-An (刘可安), Li Cheng-Zhan (李诚瞻), Liu Xin-Yu (刘新宇) Influences of high-temperature annealing on atomic layer deposited Al2O3/4H-SiC 2013 Chin. Phys. B 22 078102

[1] Lazar H R, Misra V, Johnson R S and Lucovsky G 2001 Appl. Phys. Lett. 79 973
[2] Liu L, Yang Y T and Ma X Y 2011 Chin. Phys. B 20 127204
[3] Tang X Y, Song Q W, Zhang Y M, Zhang Y M, Jia R X, Lü H L and Wang Y H 2012 Chin. Phys. B 21 087701
[4] Taube A, Gieraltowskac S, Gutta T, Malachowskia T, Pasternaka I, Wojciechowskic T, Rzodkiewicza W, Sawickic M and Piotrowska A 2011 Acta Phys. Pol. A 119 696
[5] Komatsu N, Satoh T, Honjo M, Futatuki T, Masumoto K, Kimura C and Aoki H 2011 Appl. Surf. Sci. 257 8307
[6] Singh R 2006 Microelectron Reliab. 46 713
[7] Song Q W, Zhang Y M, Han J S, Philip T, Sima D, Zhang Y M, Tang X Y and Guo H 2013 Chin. Phys. B 22 027302
[8] Groner M D, Elam J W, Fabreguette H H and George S M 2002 Thin Solid Films 413 186
[9] Avice M, Grossner U, Pintilie I, Svensson B G, Servidori M, Nipoti R, Nilsen O and Fjellvag H 2007 J. Appl. Phys. 102 054513
[10] Avice M, Grossner U, Nilsen O, Christensen J S, Fjellvag H and Svensson B G 2006 Phys. Scr. 126 9
[11] Avice M, Grossner U, Nilsen O, Christensen J S, Fjellvag H and Svensson B G 2006 Mater. Sci. Forum. 527 1067
[12] Perevalov T V, Tereshenko O E, Gritsenko V A, Pustovarov V A, Yelisseyev A P, Park C, Han J H and Lee C 2010 J. Appl. Phys. 108 013501
[13] Weber J R, Janotti A and van de Walle C G 2011 J. Appl. Phys. 109 033715
[14] Petrik P, Szilagyi E, Lohner T, Battistig B, Fried M, Dobrik G and Biro L P 2009 J. Appl. Phys. 106 123506
[15] Saito S, hisamoto D, Kimura S and Hiratani M 2003 International Electron Devices Meeting Technical Digest, December 8, 2003 Washinton DC, American, p. 797
[16] Vermang B, Goverde H, Lorenz A, Uruena A, Vereecke G, Meersschaut J, Cornagliotti E, Rothschild A, John J, Poortmans J and Mertens R 2011 37th IEEE Photovoltaic Specialists Conference, June 19, 2011 Seattle, America, p. 3562
[17] Correa S A, Marmitt G G, Bom N M, Rosa A T, Stedile F C, Radtke C, Soares G V, Baumvol I J R, Krug C and Gobbi A L 2009 Appl. Phys. Lett. 95 051916
[18] Zhu Y Y, Fang Z B and Xu R 2011 J. Rare Earth. 29 958
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[10] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[11] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[12] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[13] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[14] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[15] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
No Suggested Reading articles found!