CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Strong flux pinning enhancement in YBa2Cu3O7-x films by embedded BaZrO3 and BaTiO3 nanoparticles |
Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Wang Hong-Yan (王洪艳), Qu Fei (屈飞), Qiu Qing-Quan (邱清泉), Dai Shao-Tao (戴少涛), Peng Xing-Yu (彭星煜) |
Key Laboratory of Applied Superconductivity, Chinese Academy of Sciences, Beijing 100190, China; Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract YBa2Cu3O7-x (YBCO) films with embedded BaZrO3 and BaTiO3 nanoparitcles were fabricated by metalorganic deposition using trifluoroacetates (TFA-MOD). Both X-ray diffraction and transmission electron microscopy revealed that these BaZrO3 and BaTiO3 nanoparitcles had random orientations and were distributed stochastically in the YBCO matrix. The unique combined microstructure enhanced the critical current density (Jc) of the BaZrO3/BaTiO3 doped-YBCO films while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. These results indicated that the BaZrO3 and BaTiO3 nanoparitcles provide strong flux pinning in YBCO films.
|
Received: 05 January 2013
Revised: 22 February 2013
Accepted manuscript online:
|
PACS:
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
81.15.Lm
|
(Liquid phase epitaxy; deposition from liquid phases (melts, solutions, And surface layers on liquids))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51002149 and 51272250) and the National Basic Research Program of China (Grant No. 2011CBA00105). |
Corresponding Authors:
Ding Fa-Zhu, Gu Hong-Wei
E-mail: dingfazhu@mail.iee.ac.cn;guhw@mail.iee.ac.cn
|
Cite this article:
Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Wang Hong-Yan (王洪艳), Qu Fei (屈飞), Qiu Qing-Quan (邱清泉), Dai Shao-Tao (戴少涛), Peng Xing-Yu (彭星煜) Strong flux pinning enhancement in YBa2Cu3O7-x films by embedded BaZrO3 and BaTiO3 nanoparticles 2013 Chin. Phys. B 22 077401
|
[1] |
Larbalestier D C, Gurevich A, Feldmann D M and Polyanskii A 2001 Nature 414 368
|
[2] |
Iijima Y, Tanabe N, Kohno O and Ikeno Y 1992 Appl. Phys. Lett. 60 769
|
[3] |
Dover R B, Gyorgy E M, Schneemeyer L F, Michell J W, Rao K V, Puzniak R and Waszczia J V 1989 Nature 342 55
|
[4] |
Civale L, Marwick A D, McElfresh M W, Worthington T K, Malozemoff A P and Holtzberg F H 1990 Phys. Rev. Lett. 65 1164
|
[5] |
Sauerzopf F M, Wiesinger H P, Kritscha W, Weber H W, Crabtree G W and Liu J Z 1991 Phys. Rev. B 43 3091
|
[6] |
Gutierrez J, Puig T, Gibert M, Moreno C, Roma N, Pomar A and Obradors X 2009 Appl. Phys. Lett. 94 172513
|
[7] |
Polat Ö, Ertugrul M, Thompson J R, Leonard K J, Sinclair J W, Paranthaman M P, Wee S H, Zuev Y L, Xiong X, Selvamanickam V, Christen D K and Aytug T 2012 Supercond. Sci. Technol. 25 025018
|
[8] |
Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R and Civale L 2009 Nature Mater. 8 398
|
[9] |
Engel S, Thersleff T, Hühne R, Schultz L and Holzapfel B 2007 Appl. Phys. Lett. 90 102505
|
[10] |
Varanasi C V, Barnes P N, Burke J, Brunke L, Maartense I, Haugan T J, Stinzianni E A, Dunn K A and Haldar P 2006 Supercond. Sci. Technol. 19 L37
|
[11] |
Varanasi C V, Burke J, Brunke L, Wang H, Sumption M and Barnes P N 2007 J. Appl. Phys. 102 063909
|
[12] |
Hanisch J, Cai C, Huhne R, Schultz L and Holzapfel B 2005 Appl. Phys. Lett. 86 122508
|
[13] |
Haugan T, Barnes P N, Wheeler R, Meisenkothen F and Sumption M 2004 Nature 430 867
|
[14] |
Kiessling A, Hänisch J, Thersleff T, Reich E, Weigand M, Hühne R, Sparing M, Holzapfel B, Durrell J H and Schultz1 L 2011 Supercond. Sci. Technol. 24 055018
|
[15] |
Peng L, Cai C, Chen C, Liu Z, Liu J, Gao B and Zhang J 2008 J. Phys. D: Appl. Phys. 41 155403
|
[16] |
Barnes P N, Kell J W, Harrison B C, Haugan T J, Varanasi C V, Rane M and Ramos F 2006 Appl. Phys. Lett. 89 012503
|
[17] |
Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D and Wang X X 2008 Chin. Phys. B 17 3484
|
[18] |
Lee S Y, Song S and Kim B J 2006 Physica C 445-448 578
|
[19] |
Ding F Z, Gu H W, Zhang T, Dai S T and Xiao L Y 2011 Chin. Phys. B 20 027402
|
[20] |
MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P and Peterson D E 2004 Nature Mater. 3 439
|
[21] |
Gutiérrez J, Llordés A, Gázquez J, Gibert M, Romá N, Ricart S, Pomar A, Sanditmenge F, Mestres N, Puig T and Obradors X 2007 Nature Mater. 6 367
|
[22] |
Ding F, Gu H, Zhang T, Wang H, Qu F, Dai S, Peng X and Cao J 2012 J. Alloys Compd. 513 277
|
[23] |
Feldmann D M, Holesinger T G, Maiorov B, Zhou H, Foltyn S R, Coulter J Y and Apodoca I 2010 Supercond. Sci. Technol. 23 115016
|
[24] |
Mikheenko P, Dang V S, Tse Y Y, AwangKechik M M, Paturi P, Huhtinen H, Wang Y, Sarkar A, Abell J S and Crisan A 2010 Supercond. Sci. Technol. 23 125007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|