CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Theoretical demonstration of hybrid focusing points ofsonic crystal flat lenses and possible applications |
Serkan Alagoza, Baris Baykant Alagozb |
a Department of Physics, Inonu University, Center Campus, Malatya; b Department of Electric-Electronics, Inonu University, Center Campus, Malatya |
|
|
Abstract We demonstrate the hybrid focusing points of sonic crystals for a multi-source array applied to flat sonic crystal lenses. The contributions of different point source couples form hybrid focusing points. Ray-trace analyses are conducted for acoustic flat lenses with multi-source configurations. The finite-difference time-domain (FDTD) simulation of flat lenses with multi-source configurations demonstrates the establishment of pure and hybrid focusing points in a pyramidal constellation. The number of focusing points in the pyramidal constellation depends on the number of point sources. We propose an acoustic device for fine-tuning the location of a far-field hybrid focusing point and discuss its benefits for acoustic energy focusing application.
|
Received: 27 December 2012
Revised: 12 February 2013
Accepted manuscript online:
|
PACS:
|
62.65.+k
|
(Acoustical properties of solids)
|
|
43.20.El
|
(Reflection, refraction, diffraction of acoustic waves)
|
|
43.35.Cg
|
(Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)
|
|
Corresponding Authors:
Serkan Alagoz
E-mail: serkan.alagoz@inonu.edu.tr
|
Cite this article:
Serkan Alagoz, Baris Baykant Alagoz Theoretical demonstration of hybrid focusing points ofsonic crystal flat lenses and possible applications 2013 Chin. Phys. B 22 076201
|
[1] |
Zhuang D X, Chen X Y, Li J J, Qiang Z X, Jiang J Z, Chen Z Y, Qiu Y S and Li H 2012 Chin. Phys. Lett. 29 124201
|
[2] |
Wang C H, Kuang D F, Chang S J and Lin L 2012 Chin. Phys. Lett. 29 124205
|
[3] |
Zhang C X and Xu X S 2012 Chin. Phys. B 21 044213
|
[4] |
Tang H X, Zuo Y H, Yu J Z and Wang Q M 2008 Chin. Phys. B 17 228
|
[5] |
Zhang H, Guo P, Chang S J and Yuan J H 2008 Chin. Phys. Lett. 25 3898
|
[6] |
Shen X X, Yang X L, Cai L Z, Wang Y R, Dong G Y, Meng X F and Xu X F 2008 Chin. Phys. Lett. 25 3972
|
[7] |
Zhang X, Chen S W, Liao Q H, Yu T B, Liu N H and Huang Y Z 2011 Chin. Phys. Lett. 28 084201
|
[8] |
Wu H, Jiang L Y, Jia W and Li X Y 2012 Chin. Phys. Lett. 29 034203
|
[9] |
Hou S L, Xue L M, Li S P, Liu Y J and Xu Y Z 2012 Acta Phys. Sin. 61 134206 (in Chinese)
|
[10] |
Sun W Q, Liu Y M, Wang D L, Han L H, Guo X and Yu Z Y 2013 Chin. Phys. B 22 014201
|
[11] |
Feng S, Ren C, Wang W Z and Wang Y Q 2012 Chin. Phys. B 21 114212
|
[12] |
Zhu Q Y, Fu Y Q, Hu D Q and Zhang Z M 2012 Chin. Phys. B 21 064220
|
[13] |
Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D and Wei B C 2009 Chin. Phys. Lett. 26 106202
|
[14] |
Ni Q and Cheng J C 2005 Chin. Phys. Lett. 22 2305
|
[15] |
Gao X W, Chen S B, Chen J B, Zheng Q H and Yang H 2012 Chin. Phys. B 21 064301
|
[16] |
Kong X Y, Yue L L, Chen Y and Liu Y K 2012 Chin. Phys. B 21 096101
|
[17] |
Zhong L H, Wu F G and Zhong H L 2010 Chin. Phys. B 19 020301
|
[18] |
Zhu X F, Liu S C, Xu T, Wang T H and Cheng J C 2010 Chin. Phys. B 19 044301
|
[19] |
Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
|
[20] |
Li Y, Hou Z L, Fu X J and Badreddine M A 2010 Chin. Phys. Lett. 27 074303
|
[21] |
Zhang S, Hua J and Cheng J C 2003 Chin. Phys. Lett. 20 1303
|
[22] |
Jiang H, Wang Y R, Zhang M L, Hu Y P, Lan D, Wu Q L and Lu H T 2010 Chin. Phys. B 19 026202
|
[23] |
Qin B, Chen J J and Cheng J C 2005 Chin. Phys. 14 2522
|
[24] |
Qiu C, Zhang X and Liu Z 2005 Phys. Rev. B 71 054302
|
[25] |
Alagoz S and Alagoz B B 2009 Appl. Acoust. 70 1400
|
[26] |
Alagoz S 2012 Chin. J. Phys. 50 703
|
[27] |
Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 024301
|
[28] |
Alagoz S 2012 Chin. Phys. B 21 126202
|
[29] |
Feng Z F, Wang X G, Li Z Y and Zhang D Z 2008 Chin. Phys. B 17 1101
|
[30] |
He Z, Li X, Mei J and Liu Z 2009 J. Appl. Phys. 106 026105
|
[31] |
Sukhovich A, Merheb B, Muralidharan K, Vasseur J O, Pennec Y, Deymier P A and Page J H 2009 Phys. Rev. Lett. 102 154301
|
[32] |
Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G and Wen X S 2008 Chin. Phys. B 17 1305
|
[33] |
Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
|
[34] |
Sanchez-Morcillo V J, Staliunas K, Espinosa V, Pérez-Arjona I, Redondo J and Soliveres E 2009 Phys. Rev. B 80 134303
|
[35] |
Economou E N and Sigalas M M 1993 Phys. Rev. B 48 13434
|
[36] |
Miyashita T 2005 Meas. Sci. Technol. 16 47
|
[37] |
Wang W C, Wu L Y, Chen L W and Liu C M 2010 Smart Mater. Struct. 19 045016
|
[38] |
Feng Z F 2010 Chin. Phys. B 19 067201
|
[39] |
Wu L Y, Yang W P and Chen L W 2008 Phys. Lett. A 372 2701
|
[40] |
Deng K, Ding Y, He Z, Zhao H, Shi J and Liu Z 2009 J. Phys. D: Appl. Phys. 42 185505
|
[41] |
Wang W C, Wu L Y, Chen L W and Liu C M 2010 Smart Mater. Struct. 19 045016
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|