ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Defect solitons supported by parity-time symmetric defect in superlattices |
Hu Su-Mei (胡素梅)a, Hu Wei (胡巍)b |
a Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000, China; b Laboratory of Photonic Information Technology, South China Normal University, Guangzhou 510631, China |
|
|
Abstract The existence and stability of defect solitons supported by parity-time (PT) symmetric defects in superlattices are investigated. In the semi-infinite gap, in-phase solitons are found to exist stably for positive defects, zero defects, and negative defects. In the first gap, out-of-phase solitons are stable for positive defects or zero defects, whereas in-phase solitons are stable for negative defects. For both the in-phase and out-of-phase solitons with the positive defect and in-phase solitons with negative defect in the first gap, there exists a cutoff point of the propagation constant below which the defect solitons vanish. The value of the cutoff point depends on the depth of defect and the imaginary parts of the PT symmetric defect potentials. The influence of the imaginary part of the PT symmetric defect potentials on soliton stability is revealed.
|
Received: 02 November 2012
Revised: 17 December 2012
Accepted manuscript online:
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804033, 11174090, and 11174091). |
Corresponding Authors:
Hu Wei
E-mail: huwei@scnu.edu.cn
|
Cite this article:
Hu Su-Mei (胡素梅), Hu Wei (胡巍) Defect solitons supported by parity-time symmetric defect in superlattices 2013 Chin. Phys. B 22 074201
|
[1] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[2] |
Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
|
[3] |
Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
|
[4] |
El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
|
[5] |
Musslimani Z H, Makris K G, El-Ganainy R and Christodoulides D N 2008 Phys. Rev. Lett. 100 030402
|
[6] |
Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
|
[7] |
Hu S M, Ma X K, Lu D Q, Yang Z J, Zheng Y Z and Hu W 2011 Phys. Rev. A 84 043818
|
[8] |
Hu S M, Ma X K, Lu D Q, Zheng Y Z and Hu W 2012 Phys. Rev. A 85 043826
|
[9] |
Hu S M, Lu D Q, Ma X K, Guo Q and Hu W 2012 Europhys. Lett. 98 14006
|
[10] |
Miroshnichenko A E, Malomed B A and Kivshar Y S 2011 Phys. Rev. A 84 012123
|
[11] |
Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
|
[12] |
Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nature Phys. 6 192
|
[13] |
Regensburger A, Bersch C, Mirl M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
|
[14] |
Ramezani H, Kottos T, El-Ganainy R and Christodoulides D N 2010 Phys. Rev. A 82 043803
|
[15] |
Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
|
[16] |
Abdullaev F Kh, Kartashov Y V, Konotop V V and Zezyulin D 2011 Phys. Rev. A 83 043805
|
[17] |
Zezyulin D A, Kartashov Y V and Konotop V V 2011 Europhys. Lett. 96 64003
|
[18] |
Zhou K Y, Guo Z Y, Wang J C and Liu S T 2011 Opt. Lett. 35 2928
|
[19] |
Wang H and Wang J 2011 Opt. Express 19 4030
|
[20] |
Schindler J, Li A, Zheng M C, Ellis F M and Kottos T 2011 Phys. Rev. A 84 040101
|
[21] |
Ramezani H, Schindler J, Ellis F M, Gunther U and Kottos T 2012 Phys. Rev. A 85 062122
|
[22] |
Lin Z, Schindler J, Ellis F M and Kottos T 2012 Phys. Rev. A 85 050101
|
[23] |
Chen W H, He Y J and Wang H Z 2007 Opt. Express 22 14498
|
[24] |
Zhang Z Y and Xiong S J 1997 Phys. Rev. B 55 10302
|
[25] |
Alekseev K N, Berman G P, Campbell D K, Cannon E H and Cargo M C 1996 Phys. Rev. B 54 10625
|
[26] |
Porter M A, Kevrekidis P G, Carretero-Gonzalez R and Frantzeskakis D J 2006 Phys. Lett. A 352 210
|
[27] |
Ghulinyan M, Oton C J, Gaburro Z, Pavesi L, Toninelli C and Wiersma D S 2005 Phys. Rev. Lett. 94 127401
|
[28] |
Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tünnermann A and Longhi S 2009 Phys. Rev. Lett. 102 076802
|
[29] |
Dong L W, Yang X Y and Chen H Y 2009 Chin. Phys. B 18 988
|
[30] |
Chen W and Mills D L 1987 Phys. Rev. Lett. 58 160
|
[31] |
Hu S M and Hu W 2012 Chin. Phys. B 21 024212
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|