Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074705    DOI: 10.1088/1674-1056/22/7/074705
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux

Krishnendu Bhattacharyya
Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
Abstract  In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations,and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting.
Keywords:  non-uniform heat flux      heat transfer      stagnation-point flow      shrinking sheet  
Received:  10 September 2012      Revised:  09 November 2012      Accepted manuscript online: 
PACS:  47.15.Cb (Laminar boundary layers)  
  44.27.+g (Forced convection)  
Fund: Project supported by the National Board for Higher Mathematics (NBHM), DAE, Mumbai, India.
Corresponding Authors:  Krishnendu Bhattacharyya     E-mail:  krish.math@yahoo.com; krishnendu.math@gmail.com

Cite this article: 

Krishnendu Bhattacharyya Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux 2013 Chin. Phys. B 22 074705

[1] Chiam T C 1994 J. Phys. Soc. Jpn. 63 2443
[2] Mahapatra T R and Gupta A S 2001 Acta Mech. 152 191
[3] Mahapatra T R and Gupta A S 2002 Heat Mass Transfer 38 517
[4] Nazar R, Amin N, Filip D and Pop I 2004 Int. J. Non-Linear Mech. 39 1227
[5] Ishak A, Nazar R and Pop I 2006 Meccanica 41 509
[6] Layek G C, Mukhopadhyay S and Samad Sk A 2007 Int. Commun. Heat Mass Transfer 34 347
[7] Ding Q and Zhang H Q 2009 Chin. Phys. Lett. 26 104701
[8] Nadeem S, Hussain A and Khan M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 475
[9] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 094702
[10] Bhattacharyya K, Mukhopadhyay S and Layek G C 2012 Chem. Eng. Commun. 199 368
[11] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[12] Sajid M, Ali N, Javed T and Abbas Z 2010 Chin. Phys. Lett. 27 024703
[13] Bhattacharyya K and Layek G C 2010 Chem. Eng. Commun. 197 1527
[14] Bhattacharyya K and Layek G C 2011 Chem. Eng. Commun. 198 1354
[15] Eerdunbuhe and Temuerchaolu 2012 Chin. Phys. B 21 035201
[16] Salem A M and Fathy R 2012 Chin. Phys. B 21 054701
[17] Wang C Y 1990 Q. Appl. Math. 48 601
[18] Miklavčič M and Wang C Y 2006 Q. Appl. Math. 64 283
[19] Hayat T, Abbas Z and Sajid M 2007 ASME J. Appl. Mech. 74 1165
[20] Hayat T, Javed T and Sajid M 2008 Phys. Lett. A 372 3264
[21] Hayat T, Abbas Z and Ali N 2008 Phys. Lett. A 372 4698
[22] Hayat T, Abbas Z, Javed T and SajidM2009 Chaos, Solitons and Fractals 39 1615
[23] Hayat T, Iram S, Javed T and Asghar S 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2932
[24] Fang T and Zhang J 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2853
[25] Fang T, Zhang J and Yao S 2009 Chin. Phys. Lett. 26 014703
[26] Fang T and Zhang J 2010 Acta Mech. 209 325
[27] Fang T, Zhang J and Yao S 2010 Chin. Phys. Lett. 27 124702
[28] Bhattacharyya K 2011 Chem. Eng. Res. Bull. 15 12
[29] Bhattacharyya K 2011 Chin. Phys. Lett. 28 074701
[30] Bhattacharyya K and Pop I 2011 Magnetohydrodynamics 47 337
[31] Bhattacharyya K, Mukhopadhyay S, Layek G C and Pop I 2012 Int. J. Heat Mass Transfer 55 2945
[32] Bhattacharyya K, Hayat T and Alsaedi A 2013 Chin. Phys. B 22 024702
[33] Wang C Y 2008 Int. J. Non-Linear Mech. 43 377
[34] Ishak A, Lok Y Y and Pop I 2010 Chem. Eng. Commun. 197 1417
[35] Bhattacharyya K and Layek G C 2011 Int. J. Heat Mass Transfer 54 302
[36] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Int. J. Heat Mass Transfer 54 308
[37] Mahapatra T R, Nandy S K and Gupta A S 2011 ASME J. Appl. Mech. 78 021015
[38] Lok Y Y, Ishak A and Pop I 2011 Int. J. Numer. Meth. Heat Fluid Flow 21 61
[39] Yacob N A, Ishak A and Pop I 2011 Comput. Fluids 47 16
[40] Bhattacharyya K 2011 Int. Commun. Heat Mass Transfer 38 917
[41] Bachok N, Ishak A and Pop I 2011 Commun. Nonlinear Sci. Numer. Simul. 16 4296
[42] Rosali H, Ishak A and Pop I 2011 Int. Commun. Heat Mass Transfer 38 1029
[43] Fan T, Xu H and Pop I 2010 Int. Commun. Heat Mass Transfer 37 1440
[44] Bhattacharyya K 2011 Chin. Phys. Lett. 28 084702
[45] Nazar R, Jaradat M, Arifin N M and Pop I 2011 Cent. Eur. J. Phys. 9 1195
[46] Bhattacharyya K and Vajravelu K 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2728
[47] Dutta B K, Roy P and Gupta A S 1985 Int. Commun. Heat Mass Transfer 12 89
[48] Kumari M, Takhar H S and Nath G 1990 Wärme-und Stoffübertragung 25 331
[49] Vajravelu K and Rollins D 1991 J. Math. Anal. Appl. 158 241
[50] Vajravelu K and Hadjinicolaou A 1993 Int. Commun. Heat Mass Transfer 20 417
[51] Elbashbeshy E M A 1998 J. Phys. D: Appl. Phys. 31 1951
[52] AbelMS, Siddheshwar P G and NandeppanavarMM2007 Int. J. Heat Mass Transfer 50 960
[53] Ishak A, Nazar R and Pop I 2008 Phys. Lett. A 372 559
[54] Sahoo B and Do Y 2010 Int. Commun. Heat Mass Transfer 37 1064
[55] Ishak A, Nazar R and Pop I 2009 Chin. Phys. Lett. 26 014702
[56] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 024701
[57] Bhattacharyya K and Layek G C 2011 Chin. Phys. Lett. 28 084705
[58] Bhattacharyya K 2012 Int. J. Heat Mass Transfer 55 3487
[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[3] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[4] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[5] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[6] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[7] Model predictive inverse method for recovering boundary conditions of two-dimensional ablation
Guang-Jun Wang(王广军), Ze-Hong Chen(陈泽弘), Guang-Xiang Zhang(章广祥), and Hong Chen(陈红). Chin. Phys. B, 2021, 30(3): 030203.
[8] Anti-parity-time symmetric phase transition in diffusive systems
Pei-Chao Cao(曹培超) and Xue-Feng Zhu(祝雪丰). Chin. Phys. B, 2021, 30(3): 030505.
[9] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[10] Lattice Boltzmann simulation on thermal performance of composite phase change material based on Voronoi models
Meng-Yue Guo(郭孟月), Qun Han(韩群), Xiang-Dong Liu(刘向东), and Bo Zhou(周博). Chin. Phys. B, 2021, 30(10): 104401.
[11] An efficient inverse approach for reconstructing time- and space-dependent heat flux of participating medium
Shuang-Cheng Sun(孙双成), Guang-Jun Wang(王广军), and Hong Chen(陈红)$. Chin. Phys. B, 2020, 29(11): 110202.
[12] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[13] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[14] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[15] Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism
Si-Na Dang(党思娜), Hong-Jun Xue(薛红军), Xiao-Yan Zhang(张晓燕), Jue Qu(瞿珏), Cheng-Wen Zhong(钟诚文), Si-Yu Chen(陈思宇). Chin. Phys. B, 2018, 27(11): 114402.
No Suggested Reading articles found!