Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 075205    DOI: 10.1088/1674-1056/22/7/075205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump

A. Hasanbeigi, H. Mehdiank
Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614, Iran
Abstract  The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated. Analysis of the steady-state electron trajectories is performed by solving equations of motion. Our results show that the presence of corrugated channel shifts the resonance frequency to smaller values of ion channel frequency. The sixth-order dispersion equation describing the coupling between the electrostatic beam mode and the electromagnetic mode has also been derived. The characteristic of dispersion relation is analyzed in detail by numerical solution. Results show that the growth rate of instability in the presence of corrugated ion channels can be greatly enhanced relative to the case of an uniform ion channel.
Keywords:  corrugated ion-channel free-electron laser      growth rate      helical wiggler  
Received:  09 October 2012      Revised:  04 March 2013      Accepted manuscript online: 
PACS:  52.59.Rz (Free-electron devices)  
  41.60.Cr (Free-electron lasers)  
  52.27.Ny (Relativistic plasmas)  
Corresponding Authors:  A. Hasanbeigi     E-mail:  hbeigi@tmu.ac.ir

Cite this article: 

A. Hasanbeigi, H. Mehdiank Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump 2013 Chin. Phys. B 22 075205

[1] Takayama K and Hiramatsu S 1988 Phys. Rev. A 37 173
[2] Jha P and Kumar P 1996 IEEE Trans. Plasma Sci. 24 359
[3] Jha P and Kumar P 1998 Phys. Rev. E 57 2256
[4] Su D and Tang C J 2011 Phys. Plasmas 18 023104
[5] Sadegzadeh S, Hasanbeigi A, Mehdian H and Alimohamadi M 2012 Phys. Plasmas 19 023108
[6] Seo Y, Tripathi V K and Liu C S 1989 Phys. Fluids B 1 221
[7] Kurino H, Ebihara K, Hiramatsu S, Kimura Y, Kishiro J, Monaka T, Ozaki T and Takayama K 1990 Part. Accel 31 89
[8] Mehdian H and Raghavi A 2006 Plasma Phys. Control. Fusion 48 991
[9] Lee H C and Jiang T F 2010 Phys. Plasmas 17 113109
[10] Mehdian H, Hasanbeigi A and Jafari S 2010 Phys. Plasmas 17 023112
[11] Raghavi A, Ninno G D and Mehdian H 2008 Nucl. Instrum. Meth. A 591 338
[12] Esmaeilzadeh M, Mehdian H and Willett J E 2002 Phys. Rev. E 65 016501
[13] Jafari B and Maraghechi B 2012 Phys. Plasmas 19 013107
[14] Zhen Y W, Tang C J and Peng X D 2010 Phys. Plasmas 17 083114
[15] Miller J D and Gilgenbach R M 1987 Phys. Fluids 30 3165
[16] Bosch R A and Gilgenbach R M 1988 Phys. Fluids 31 634
[17] Golub Y Y and Rozanov N E 1995 Tech. Phys. 40 346
[18] Hasanbeigi A, Mehdian H and Jafari S 2011 Chin. Phys. B 20 094103
[1] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[2] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[3] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[4] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[5] Decline of nucleation in the heating process with a high heating rate
Yang Gao-Lin (杨高林), Lin Xin (林鑫), Song Meng-Hua (宋梦华), Hu Qiao (胡桥), Wang Zhi-Tai (汪志太), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2014, 23(8): 086401.
[6] Growth rate of peeling mode in the near separatrix region of diverted tokamak plasma
Shi Bing-Ren (石秉仁). Chin. Phys. B, 2014, 23(1): 015202.
[7] Three-dimensional simulation of long-wavelength free-electron lasers with helical wiggler and ion-channel guiding
F. Jafari Bahman, B. Maraghechi. Chin. Phys. B, 2013, 22(7): 074102.
[8] Gain calculation of a free-electron laser operating with a non-uniform ion-channel guide
A. Hasanbeigi, H. Mehdian, and S. Jafari . Chin. Phys. B, 2011, 20(9): 094103.
[9] Linear analysis of a three-dimensional rectangular Cerenkov maser with a sheet electron beam
Chen Ye(陈晔), Zhao Ding(赵鼎), and Wang Yong(王勇) . Chin. Phys. B, 2011, 20(10): 108402.
[10] Wave growth rate in a cylindrical metal waveguide with ion-channel guiding of a relativistic electron beam
Li Hai-Rong(李海容), Tang Chang-Jian(唐昌建), and Wang Shun-Jin(王顺金). Chin. Phys. B, 2010, 19(12): 124101.
[11] The stability margin on EAST tokamak
Qian Jin-Ping(钱金平), Wan Bao-Nian(万宝年), Shen Biao(沈彪), M.L. Walker, D.A. Humphreys, and Xiao Bing-Jia(肖炳甲). Chin. Phys. B, 2009, 18(6): 2432-2440.
[12] Influence of reaction gas flows on the properties of SiGe:H thin film prepared by plasma assisted reactive thermal chemical vapour deposition
Zhang Li-Ping(张丽平), Zhang Jian-Jun(张建军), Shang Ze-Ren(尚泽仁), Hu Zeng-Xin(胡增鑫), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2008, 17(9): 3448-3452.
[13] Stimulated Raman scattering instability in partially ionized laser-plasma
Zhang Jia-Tai (张家泰). Chin. Phys. B, 2005, 14(1): 169-171.
[14] THE GROWTH RATE AND STATISTICAL FLUCTUATION OF BOSE-EINSTEIN CONDENSATE FORMATION
Yan Ke-zhu (闫珂柱), Tan Wei-han (谭维翰). Chin. Phys. B, 2000, 9(7): 485-489.
No Suggested Reading articles found!