Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077304    DOI: 10.1088/1674-1056/22/7/077304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Contact effect in the dynamic electron transport of two-probe mesoscopic conductor

Quan Jun (全军), Xiao Shi-Fa (肖世发), Tian Ying (田英)
School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048, China
Abstract  Based on the self-consistent electron dynamic transport theory for multi-probe mesoscopic systems, we calculate the distribution of internal potential, charge density, and ac conductance of a two-probe mesoscopic conductor with wide trapezoid reservoirs, and study the contact effect. The results show that including the contact effect can make a significant difference to the frequency-dependent electron transport properties. In the nonzero frequency case, the internal potential and the charge density are complex with extremely small imaginary parts. Importantly, the imaginary part of the charge density gives rise to a real ac conductance (admittance), which corresponds to the charge-relaxation resistance.
Keywords:  mesoscopic system      electron transport      conductance      charge density  
Received:  16 January 2013      Revised:  22 February 2013      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11147152), the Natural Science Foundation of Guangdong Province, China (Grant No. S2011040002130), and the Youth Program of Zhanjiang Normal University, China (Grant No. L0702).
Corresponding Authors:  Tian Ying     E-mail:  rgquan0224@gmail.com

Cite this article: 

Quan Jun (全军), Xiao Shi-Fa (肖世发), Tian Ying (田英) Contact effect in the dynamic electron transport of two-probe mesoscopic conductor 2013 Chin. Phys. B 22 077304

[1] Büttiker M, Pretre A and Thomas H 1993 Phys. Rev. Lett. 70 4114
[2] Quan J, Tian Y, Zhang J and Shao L X 2011 Chin. Phys. B 20 077201
[3] Büttiker M 1993 J. Phys: Condens. Matter 5 9361
[4] Wang C and Zhang Y H 2006 Chin. Phys. 15 2120
[5] Christen T and Büttiker M 1996 Phys. Rev. Lett. 77 143
[6] Pretre A, Thomas H and Büttiker M 1996 Phys. Rev. B 54 8130
[7] Büttiker M, Thomas H and Pretre A 1994 Physica B: Condens. Matter 94 133
[8] Zhao X A and Chen Y X 2001 Phys. Rev. B 64 085326
[9] Gasparian V, Christen T and Büttiker M 1996 Phys. Rev. A. 54 4022
[10] Ng T K 1996 Phys. Rev. Lett. 76 487
[11] Jauho A and Meir Y 1993 Phys. Rev. B 48 487
[12] Sanchez D and Büttiker M 2004 Phys. Rev. Lett. 93 106802
[13] Spivak B and Zyuzin A 2004 Phys. Rev. Lett. 93 226801
[14] Leturcq R, Sanchez D, Gotz G., Ihn T, Ensslin K, Driscoll D C and Gossard A C 2006 Phys. Rev. Lett. 96 126801
[15] Blanter Y M and Büttiker M 1998 Europhys. Lett. 42 535
[16] Sablikov V A, Polyakov S V and Büttiker M 2000 Phys. Rev. B 61 13763
[17] Sablikov V A and Shchamkhalova B S 1998 Phys. Rev. B 58 13847
[18] Quan J, Tian Y, Zhang J and Shao L X 2011 Physica B: Condens. Matter 406 1607
[19] Yacoby A, Stormer H L, Wingreen N S, Pfeiffer L N, Baldwin K W and West K W 1996 Phys. Rev. Lett. 77 4612
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[3] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
[4] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[5] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
[6] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[7] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[8] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[9] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[10] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[11] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[12] A density-wave-like transition in the polycrystalline V3Sb2 sample with bilayer kagome lattice
Ningning Wang(王宁宁), Yuhao Gu(顾雨豪), M. A. McGuire, Jiaqiang Yan, Lifen Shi(石利粉), Qi Cui(崔琦), Keyu Chen(陈科宇), Yuxin Wang(王郁欣), Hua Zhang(张华), Huaixin Yang(杨槐馨), Xiaoli Dong(董晓莉), Kun Jiang(蒋坤), Jiangping Hu(胡江平), Bosen Wang(王铂森), Jianping Sun(孙建平), and Jinguang Cheng(程金光). Chin. Phys. B, 2022, 31(1): 017106.
[13] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[14] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[15] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
No Suggested Reading articles found!