Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074214    DOI: 10.1088/1674-1056/22/7/074214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of laser linewidth on performance of Brillouin optical time domain reflectometry

Hao Yun-Qi (郝蕴琦)a b, Ye Qing (叶青)a, Pan Zheng-Qing (潘政清)a, Cai Hai-Wen (蔡海文)a, Qu Rong-Hui (瞿荣辉)a
a Shanghai Key Laboratory of All Solid-state Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b Department of Technology Physics, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Abstract  The effects of optical sources with different laser linewidths on Brillouin optical time domain reflectometry (BOTDR) are investigated numerically and experimentally. Simulation results show that the spectral linewidth of spontaneous Brillouin scattering remains almost constant when the laser linewidth is less than 1 MHz at the same pulse width; otherwise, it increases sharply. A comparison between a fiber laser (FL) with 4-kHz linewidth at 3 dB and a distributed feedback (DFB) laser with 3-MHz linewidth is made experimentally. When a constant laser power is launched into the sensing fiber, the fitting linewidths of the beat signals (backscattered Brillouin light and local oscillator (LO)) is about 5 MHz wider for the DFB laser than for the FL and the intensity of the beat signal is about a half. Furthermore, the frequency fluctuation in the long sensing fiber is lower for the FL source, yielding about 2 MHz less than that of the DFB laser, indicating higher temperature/strain resolution. The experimental results are in good agreement with the numerical simulations.
Keywords:  Brillouin optical time domain reflectometry (BOTDR)      laser linewidth      distributed feedback laser      fiber laser  
Received:  10 October 2012      Revised:  14 December 2012      Accepted manuscript online: 
PACS:  42.81.Pa (Sensors, gyros)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  42.55.Wd (Fiber lasers)  
  42.55.Px (Semiconductor lasers; laser diodes)  
Fund: Project supported by the Science and Technology Commission of Shanghai Municipality (Grant Nos. 2012AA041203 and 13XD1425400), and the Pudong New Area Science and Technology Development Fund, China (Grant No. PKJ2012-D04).
Corresponding Authors:  Cai Hai-Wen, Ye Qing     E-mail:  hwcai@siom.ac.cn;yeqing@siom.ac.cn

Cite this article: 

Hao Yun-Qi (郝蕴琦), Ye Qing (叶青), Pan Zheng-Qing (潘政清), Cai Hai-Wen (蔡海文), Qu Rong-Hui (瞿荣辉) Influence of laser linewidth on performance of Brillouin optical time domain reflectometry 2013 Chin. Phys. B 22 074214

[1] Culverhouse D, Farahi F, Pannel C N and Jackson D A 1989 Electron. Lett. 25 913
[2] Kurashi T, Horiguchi T, Izumita H, Furukawa S and Koyamada Y 1992 International Quantum Electronics Conference, July 14-19, 1992, Vienna, Austria, p. 42
[3] Geng J H, Staines S, Blake M and Jiang S B 2007 Appl. Opt. 46 5928
[4] Horiguchi T, Kurashima T and Tateda M 1989 IEEE Photon. Technol. Lett. 1 107
[5] Horiguchi T, Kurashima T and Tateda M 1990 Appl. Opt. 29 2219
[6] Song M P, Zhao B and Zhang X M 2005 Chin. Opt. Lett. 3 271
[7] Dong Y K, Chen L and Bao X Y 2010 Appl. Opt. 49 5020
[8] Linze N, Li W H and Bao X Y 2009 20th International Conference on Optical Fiber Sensors, October 5-9, 2009, Edinburgh, United Kingdom, p. 75036F-1
[9] Iida D and Ito F 2009 Appl. Opt. 48 4302
[10] Naruse H and Tateda M 1999 Appl. Opt. 38 6516
[11] Pan Z Q, Cai H W, Meng L, Geng J X, Ye Q, Fang Z J and Qu R H 2010 Chin. Opt. Lett. 8 52
[12] Zhang W N, Li C, Mo S P, Yang C S, Feng Z M, Xu S H, Shen S X, Peng M Y, Zhang Q Y and Yang Z M 2012 Chin. Phys. Lett. 29 084205
[13] Harun S W, Shahi S and Ahmad H 2009 Opt. Lett. 34 46
[14] Hao Y Q, Ye Q, Pan Z Q, Yang F, Cai H W, Qu R H, Zhang Q Y and Yang Z M 2012 IEEE Photon. J. 4 1622
[15] Horiguchi T, Shimizu K, Kurashima T, Tateda M and Koyamada Y 1995 J. Lightwave Technol. 13 1296
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[5] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[6] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[9] A 795 nm gain coupled distributed feedback semiconductor laser based on tilted waveguides
De-Zheng Ma(马德正), Yong-Yi Chen(陈泳屹), Yu-Xin Lei(雷宇鑫), Peng Jia(贾鹏), Feng Gao(高峰), Yu-Gang Zeng(曾玉刚), Lei Liang(梁磊), Yue Song(宋悦), Chun-Kao Ruan(阮春烤), Xia Liu(刘夏), Li Qin(秦莉), Yong-Qiang Ning(宁永强), and Li-Jun Wang(王立军). Chin. Phys. B, 2021, 30(5): 050505.
[10] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[11] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[12] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[13] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[14] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!