Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074102    DOI: 10.1088/1674-1056/22/7/074102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Three-dimensional simulation of long-wavelength free-electron lasers with helical wiggler and ion-channel guiding

F. Jafari Bahman, B. Maraghechi
Department of Physics, Amirkabir University of Technology, Tehran 15916-34311, Iran
Abstract  A three-dimensional simulation of a steady-state amplifier model of a long-wavelength free-electron laser (FEL) with realizable helical wiggler and ion-channel guiding is presented. The set of coupled nonlinear differential equations for electron orbits and fields of TE11 mode in a cylindrical waveguide are solved numerically by Runge-Kutta algorithm with averages calculated by the Gaussian quadrature technique. Self-fields and space-charge effects are neglected, and the electron beam is assumed to be cold and slippage is ignored. The parameters correspond to the Compton regime. Evolution of the radiation power and growth rate along the wiggler is studied. Ion-channel density is chosen to obtain optimum efficiency. Simulations are preformed for the FEL operating in the neighborhood of 35 GHz and 16.5 GHz for the electron beam energies of 250 keV and 400 keV, respectively. The result of the saturated efficiency was found to be in good agreement with the simple estimation based on the phase-trapping model.
Keywords:  free-electron laser      helical wiggler      ion-channel guiding  
Received:  11 May 2012      Revised:  14 August 2012      Accepted manuscript online: 
PACS:  41.60.Cr (Free-electron lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  02.60.Cb (Numerical simulation; solution of equations)  
Corresponding Authors:  F. Jafari Bahman     E-mail:  jafary_bahman@yahoo.com

Cite this article: 

F. Jafari Bahman, B. Maraghechi Three-dimensional simulation of long-wavelength free-electron lasers with helical wiggler and ion-channel guiding 2013 Chin. Phys. B 22 074102

[1] Thumm M 2009 Nucl. Instrum. Meth. Phys. Res. A 483 186
[2] Petelin M I 1999 IEEE Trans. Plasma Sci. PS-27 294
[3] Grantstein V L, Levush B, Danly B G and Parker R K IEEE Trans. Plasma Sci. PS-25 1322
[4] Freund H P and Neil G R 1999 Proc. IEEE 87 782
[5] Martin W E, Caporaso G J, Fawley W M, Prosnitz D and Cole A G 1985 Phys. Rev. Lett. 54 685
[6] Caporaso G J, Rainer F, Martin W E, Prone O S and Cole A G 1986 Phys. Rev. Lett. 57 1591
[7] Takayama K and Hiramatsu S 1988 Phys. Rev. A 37 173
[8] Ozaki T, Ebihara K, Hiramatsu S, Kishiro J, Monaka T, Takayama K and Whittum D H 1992 Nucl. Instrum. Meth. Phys. Res. A 318 101
[9] Yu L H, Sessler A M and Whittum D H 1992 Nucl. Instrum. Meth. Phys. Res. A 318 721
[10] Jha P and Wurtele J S 1993 1993 Nucl. Instrum. Meth. Phys. Res. A 331 477
[11] Jha P and Kumar P 1996 IEEE Trans. Plasma Sci. 24 1359
[12] Esmaeilzadeh M, Ebrahimi S, Siahian A, Willett J E and Willett L J 2005 Phys. Plasmas 12 093103
[13] Mirzanejhad S and Asri M 2005 Phys. Plasmas 12 093108
[14] Kordbacheh A A, Maraghechi B, Farokhi B and Willett J E 2005 Phys. Plasmas 12 113106
[15] Jha P and Kumar P 1998 Phys. Rev. E 57 2256
[16] Esmaeilzadeh M, Mehdian H and Willett J E 2001 Phys. Rev. E 65 016501
[17] Mirzanejhad S and Asri M 2005 Phys. Plasmas 12 093108
[18] Mirzanejhad S, Maraghechi P and Maraghechi B 2004 Phys. Plasmas 11 3047
[19] Raghavi A, Ninno G D and Mehdian H 2008 Nucl. Instrum. Meth. Phys. Res. A 591 338
[20] Rouhani M H and Maraghechi B 2009 Phys. Plasmas 16 093110
[21] Rouhani M H and Maraghechi B 2010 Phys. Plasmas 17 023104
[22] Ganguly A K and Freund H P 1985 Phys. Rev. A 32 2275
[23] Reiche S 1999 Nucl. Instrum. Meth. Phys. Res. A 429 243
[24] Lin A T and Lin C C 1986 Nucl. Instrum. Meth. Phys. Res. A 250 1373
[25] Freund H P and Antonsen T M Jr 1992 Principles of Free-Electron Lasers (London: Chapman and Hall) chapter 5
[1] Picosecond terahertz pump-probe realized from Chinese terahertz free-electron laser
Chao Wang(王超), Wen Xu(徐文), Hong-Ying Mei(梅红樱), Hua Qin(秦华), Xin-Nian Zhao(赵昕念), Hua Wen(温华), Chao Zhang(张超), Lan Ding(丁岚), Yong Xu(徐勇), Peng Li(李鹏), Dai Wu(吴岱), Ming Li(黎明). Chin. Phys. B, 2020, 29(8): 084101.
[2] Electric field in two-dimensional complex plasma crystal: Simulated lattices
Behnam Bahadory. Chin. Phys. B, 2018, 27(2): 025202.
[3] Plural interactions of space charge wave harmonics during the development of two-stream instability
Victor Kulish, Alexander Lysenko, Michael Rombovsky, Vitaliy Koval, Iurii Volk. Chin. Phys. B, 2015, 24(9): 095201.
[4] Effects of self-fields on electron trajectory and gain in planar wiggler free-electron lasers with two-stream and ion-channel guiding
S. Saviz, M. Karimi. Chin. Phys. B, 2014, 23(3): 034103.
[5] Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser
Ji Yu-Pin (吉驭嫔), Wang Shi-Jian (王时建), Xu Jing-Yue (徐竟跃), Xu Yong-Gen (徐勇根), Liu Xiao-Xu (刘晓旭), Lu Hong (卢宏), Huang Xiao-Li (黄小莉), Zhang Shi-Chang (张世昌). Chin. Phys. B, 2014, 23(2): 024103.
[6] Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump
A. Hasanbeigi, H. Mehdiank. Chin. Phys. B, 2013, 22(7): 075205.
[7] Efficiency enhancement of a two-beam free-electron laser using a nonlinearly tapered wiggler
Maryam Zahedian, B. Maraghechi, and M.H. Rouhani . Chin. Phys. B, 2012, 21(3): 034101.
[8] Gain calculation of a free-electron laser operating with a non-uniform ion-channel guide
A. Hasanbeigi, H. Mehdian, and S. Jafari . Chin. Phys. B, 2011, 20(9): 094103.
No Suggested Reading articles found!