Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070501    DOI: 10.1088/1674-1056/22/7/070501
GENERAL Prev   Next  

Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters

Liu Ping (刘平)
Shandong Key Laboratory of Gardening Machinery and Equipment, College of Mechanical and Electronic Engineering,Shandong Agricultural University, Taian 271018, China
Abstract  This paper deals with the finite-time stabilization of the unified chaotic complex systems with known and unknown parameters. Based on the finite-time stability theory, the nonlinear control laws are presented to achieve finite-time chaos control of the determined and uncertain unified chaotic complex systems, respectively. The two controllers are simple and one of the uncertain unified chaotic complex systems is robust. For the design of finite-time controller on uncertain unified chaotic complex systems, only part of all unknown parameters are required to be bounded. Simulation results for the chaotic complex Lorenz, Lü and Chen systems are presented to validate the design and the analysis.
Keywords:  finite-time stability      uncertain parameters      unified chaotic complex systems  
Received:  21 August 2012      Revised:  22 October 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60874009 and 10971120) and the Natural Science Foundation of Shandong province, China (Grant No. ZR2010FM010).
Corresponding Authors:  Liu Ping     E-mail:  pingliu@mail.sdu.edu.cn

Cite this article: 

Liu Ping (刘平) Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters 2013 Chin. Phys. B 22 070501

[1] Wang X, Zhang N, Ren X and Zhang Y 2011 Chin. Phys. B 20 020507
[2] Kolumban G, Kennedy M P and Chua L O 1997 IEEE Trans. Circuits Syst. I 44 927
[3] Chen G and Dong X 1998 From Chaos to Order: Methodologies Perspectives and Applications (Singapore: World Scientific)
[4] Chen S H, Liu J, Xie J and Lu J A 2002 Chin. Phys. B 11 233
[5] Sun F Y 2006 Chin. Phys. Lett. 23 32
[6] Liu P and Liu S T 2011 Phys. Scr. 83 065006
[7] Liu S and Liu P 2011 Nonlinear Anal.-Real World Appl. 12 3046
[8] Guan B, Xu J, Peng H etc 2001 Chin. Phys. B 10 708
[9] Lü L, Zhang Q L and Guo Z A 2008 Chin. Phys. B 17 498
[10] Bhat S and Bernstein D 1997 Proceedings of ACC, June 4-6, 1997, NM, Albuquerque, p. 2513
[11] Haimo V T 1986 SIAM J. Control Optim. 24 760
[12] Yu W G 2010 Phys. Lett. A 374 3021
[13] Yu W G 2010 Phys. Lett. A 374 1488
[14] Millerioux G and Mira C 2001 IEEE Trans. Circuits Syst. I 48 111
[15] Wang F, Si S and Shi G 2006 Acta Phys. Sin. 55 5694 (in Chinese)
[16] Yu W 2010 Phys. Lett. A 374 3021
[17] Guo R and Vincent U E 2010 Phys. Lett. A 375 119
[18] Gao T, Chen Z and Yuan Z 2005 Acta Phys. Sin. 54 2574 (in Chinese)
[19] Ning C and Haken H 1990 Phys. Rev. A 41 3826
[20] Gibbon J D and McGuinnes M J 1982 Physica D 5 108
[21] Rauh A, Hannibal L and Abraham N 1996 Physica D 99 45
[22] Hu M, Yang Y, Xu Z and Guo L 2008 Math. Comput. Simul. 79 449
[23] Wu Z, Duan J and Fu X 2012 Nonlinear Dyn. 69 771
[24] Rauh A, Hannibal L and Abraham N B 1996 Physica D 99 45
[25] Mahmoud G M, Bountis T and Mahmoudb E E 2007 Int. J. Bifurc. Chaos 17 4295
[26] Liu P and Liu S T 2012 Nonlinear Dyn. 70 585
[27] Liu P and Liu S 2012 Phys. Scr. 85 035005
[28] Lu J, Chen G, Cheng D and Celikovsky S 2002 Int. J. Bifurc. Chaos 12 2917
[29] Feng Y, Sun L X and Yu X H 2004 The 30th Annual Conference of the IEEE Industrial Electronics Society, November 2-6, 2004, Busan, Korea, p. 2911
[30] Khalil H K 2002 Nonlinear Systems 3rd edn. (New Jersey: Prentice-Hall)
[1] Robust output feedback cruise control for high-speed train movement with uncertain parameters
Li Shu-Kai (李树凯), Yang Li-Xing (杨立兴), Li Ke-Ping (李克平). Chin. Phys. B, 2015, 24(1): 010503.
[2] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[3] Chaos suppression of uncertain gyros in a given finite time
Mohammad Pourmahmood Aghababa, Hasan Pourmahmood Aghababa. Chin. Phys. B, 2012, 21(11): 110505.
[4] Complete synchronization of double-delayed R?ssler systems with uncertain parameters
Sang Jin-Yu(桑金玉), Yang Ji(杨吉), and Yue Li-Juan(岳立娟) . Chin. Phys. B, 2011, 20(8): 080507.
[5] Controlling chaos in power system based on finite-time stability theory
Zhao Hui(赵辉), Ma Ya-Jun(马亚军), Liu Si-Jia(刘思佳), Gao Shi-Gen(高士根), and Zhong Dan(钟丹) . Chin. Phys. B, 2011, 20(12): 120501.
[6] Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory
Wei Du-Qu(韦笃取) and Zhang Bo(张波). Chin. Phys. B, 2009, 18(4): 1399-1403.
[7] Adaptive synchronization of uncertain Liu system via nonlinear input
Hu Jia(胡佳) and Zhang Qun-Jiao(张群娇) . Chin. Phys. B, 2008, 17(2): 503-506.
[8] Adaptive passive equivalence of uncertain Lü system
Qi Dong-Lian(齐冬莲). Chin. Phys. B, 2006, 15(8): 1715-1718.
[9] Global adaptive synchronization of chaotic systems with uncertain parameters
Li Zhi (李智), Han Chong-Zhao (韩崇昭). Chin. Phys. B, 2002, 11(1): 9-11.
[10] ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS
Li Zhi (李智), Han Chong-zhao (韩崇昭). Chin. Phys. B, 2001, 10(6): 494-496.
No Suggested Reading articles found!