Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 074401    DOI: 10.1088/1674-1056/22/7/074401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique

T. A. El-Brolossya b, O. Sabera c, S. S. Ibrahima d
a Department of Physics, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia;
b Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt;
c Egyptian Petroleum Research Institute, Cairo, Egypt;
d Department of Physics, Faculty of Science, Cairo University, Giza, Egypt
Abstract  Thermal conductivity and specific heat capacity of undoped and Al-doped (1-10 at.%) ZnO nanoparticles prepared using solvent thermal method are determined by measuring both thermal diffusivity and thermal effusivity of a pressed powder compact of the prepared nanoparticles using laser-induced photoacoustic technique. The impact of Al doping versus microstructure of the samples on such thermal parameters has been investigated. The results reveal an obvious enhancement in the specific heat capacity when decreasing the particle size, while the effect of Al doping on the specific heat capacity is minor. The measured thermal conductivities are about one order of magnitude smaller than that of the bulk ZnO due to several nested reducing heat transfer mechanisms. The results also show that Al doping significantly influences the thermal resistance. Using a simple thermal impedance model, the added thermal resistance due to Al dopant has been estimated.
Keywords:  ZnO nanoparticles      microstructure      specific heat      thermal conductivity  
Received:  05 November 2012      Revised:  15 January 2013      Accepted manuscript online: 
PACS:  44.30.+v (Heat flow in porous media)  
  44.10.+i (Heat conduction)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
Fund: Project supported by the Deanship of Scientific Research, King Faisal University, Saudi Arabia (Grant No. 130154).
Corresponding Authors:  T. A. El-Brolossy     E-mail:  elbrolosyta@yahoo.com

Cite this article: 

T. A. El-Brolossy, O. Saber, S. S. Ibrahim Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique 2013 Chin. Phys. B 22 074401

[1] Yoshinari A, Ishida K, Murai K and Moriga T 2009 Mater. Res. Bull. 44 432
[2] Sedky A and El-Suheel E 2012 Chin. Phys. B 21 116103
[3] Lupan O, Pauport'e T and Viana B 2010 J. Phys. Chem. C 114 14781
[4] Yao Y H and Cao Q X 2012 Chin. Phys. B 21 124205
[5] Pan F, Guo Y, Cheng F F, Fa T and Yao S D 2011 Chin. Phys. B 20 127501
[6] Zhang Q, Dandeneau C S, Zhou X and Cao G 2009 Adv. Mater. 21 4087
[7] Lupan O, Ursaki V, Chai G, Chow L, Emelchenko G A, Tiginyanu I M, Gruzintsev A N and Redkin A N 2010 Sensor. Actuat. B 144 56
[8] Wang X, Song J, Liu J and Wang Z L 2007 Science 316 102
[9] Lee J, Kang B S, Hicks B, Chancellor T F, Chu B H, Wang H T, Keselowsky B G, Ren F and Lele T P 2008 Biomaterials 39 3743
[10] Ohtaki M, Tsubota T, Eguchi K and Arai H 1996 J. Appl. Phys. 79 1816
[11] Cheng H, Xu X J and Hng H H 2009 J. Am. Ceram. Int. 35 3067
[12] Zhou H M, Yi D Q, Yu Z M, Xiao L R and Li J 2007 Thin Solid Films 515 6909
[13] Srinivasan G, Rajendra Kumar R T and Kumar J 2007 Opt. Mater. 30 314
[14] Arredondo E J L, Maldonado A, Asomoza R, Acosta D R, Lira M A M, de la M and Olvera L 2005 Thin Solid Films 490 132
[15] Fathollahi V and Amini M M 2001 Mater. Lett. 50 235
[16] Chen K J, Fang T H, Hung F Y, Ji L W, Chang S J, Young S J and Hsiao Y J 2008 Appl. Surf. Sci. 254 5791
[17] Olorunyolemi T, Birnboim A, Carmel Y, Wilson O C and Lloyd I K 2002 J. Am. Ceram. Soc. 85 1249
[18] Alvarez-Quintana J, Martínez E, Pérez-Tijerina E, Pérez-García S A and Rodríguez-Viejo J 2010 J. Appl. Phys. 107 063713
[19] Huang Z X, Tang Z A, Yu J and Bai S 2011 Physica B 406 084320
[20] Xu Y, Goto M, Kato R, Tanaka Y and Kagawa Y 2012 J. Appl. Phys. 111 818
[21] Tan Z C and Di Y Y 2006 Prog. Chem. 18 1234
[22] Abdalla S, Easawi K, El-Brolossy T A, Yossef G M, Negm S and Talaat H 2003 Rev. Sci. Instrum. 74 848
[23] Philip A, Joseph L K, Irimpan M L, Krishnan B, Radhakrishnan P, Nampoori V P N and Natarajan R 2007 Phys. Stat. Sol. (a) 204 737
[24] Jothi Rajan M A, Vivekanandam T S, Radhakrishman S K, Ramachandran K and Umapathy S 2004 J. Appl. Polym. Sci. 93 1071
[25] Jothi Rajan M A, Mathavan T, Vivekanandam T S and Umapathy S 2006 J. Appl. Polym. Sci. 100 3756
[26] Bonno B, Laportp J and Rousset Y 1980 J. Appl. Phys. 67 2253
[27] Poult P and Chambron J 1989 J. Appl. Phys. 51 1738
[28] Zhan Y, Zhou X, Fua B and Chen Y 2011 J. Hazard. Mater. 187 348
[29] Saber O, El-Brolossy T A and Al Jaafari A A 2012 Water Air Soil Poll. 223 4615
[30] Sanchez-L Vega A, Salazar A, Ocariz A, Ponier L, Gomez W, Viuar L M and Mawcho E 1997 Appl. Phys. A 65 15
[31] Raman S S, Nampoori V P N, Vallabhan C P G, Ambadas G and Sugunan S 1995 Appl. Phys. Lett. 67 2939
[32] El-Brolossy T A 2012 Indian J. Phys. 86 39
[33] Gadzhiev G G 2003 High Temperature 41 778
[34] Wang L, Tan Z, Meng S, Liang D and Li G 2001 J. Nanoparticle Res. 3 483
[35] Wang L, Tan Z, Meng S, Druzhinina A, Varushchenco R A and Li G 2001 J. Non-Cryst. Solids 296 139
[36] Baletto F and Ferando R 2005 Rev. Mod. Phys. 77 371
[37] Tan Z, Wang L and Shi Q 2009 Pure Appl. Chem. 81 1871
[38] Tschöpe A and Birringer R 1993 Acta Metall. Mater. 41 2791
[39] Xu Y, Goto M, Kato R, Tanaka Y and Kagawa Y 2012 J. Appl. Phys. 111 084320
[40] Zhao Y M, Zhu C L, Wang S G, Tian J Z, Yang D J, Chen C K, Cheng H and Hing P 2004 J. Appl. Phys. 96 4563
[41] Landauer R 1952 J. Appl. Phys. 23 779
[42] Poulier C, Smith D S and Absi J 2007 J. Eur. Ceram. Soc. 27 475
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[5] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[8] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[9] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[10] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[11] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[12] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[13] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[14] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[15] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
No Suggested Reading articles found!