ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique |
T. A. El-Brolossya b, O. Sabera c, S. S. Ibrahima d |
a Department of Physics, Faculty of Science, King Faisal University, Al-Ahsa, Saudi Arabia;
b Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt;
c Egyptian Petroleum Research Institute, Cairo, Egypt;
d Department of Physics, Faculty of Science, Cairo University, Giza, Egypt |
|
|
Abstract Thermal conductivity and specific heat capacity of undoped and Al-doped (1-10 at.%) ZnO nanoparticles prepared using solvent thermal method are determined by measuring both thermal diffusivity and thermal effusivity of a pressed powder compact of the prepared nanoparticles using laser-induced photoacoustic technique. The impact of Al doping versus microstructure of the samples on such thermal parameters has been investigated. The results reveal an obvious enhancement in the specific heat capacity when decreasing the particle size, while the effect of Al doping on the specific heat capacity is minor. The measured thermal conductivities are about one order of magnitude smaller than that of the bulk ZnO due to several nested reducing heat transfer mechanisms. The results also show that Al doping significantly influences the thermal resistance. Using a simple thermal impedance model, the added thermal resistance due to Al dopant has been estimated.
|
Received: 05 November 2012
Revised: 15 January 2013
Accepted manuscript online:
|
PACS:
|
44.30.+v
|
(Heat flow in porous media)
|
|
44.10.+i
|
(Heat conduction)
|
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
|
66.10.cd
|
(Thermal diffusion and diffusive energy transport)
|
|
Fund: Project supported by the Deanship of Scientific Research, King Faisal University, Saudi Arabia (Grant No. 130154). |
Corresponding Authors:
T. A. El-Brolossy
E-mail: elbrolosyta@yahoo.com
|
Cite this article:
T. A. El-Brolossy, O. Saber, S. S. Ibrahim Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique 2013 Chin. Phys. B 22 074401
|
[1] |
Yoshinari A, Ishida K, Murai K and Moriga T 2009 Mater. Res. Bull. 44 432
|
[2] |
Sedky A and El-Suheel E 2012 Chin. Phys. B 21 116103
|
[3] |
Lupan O, Pauport'e T and Viana B 2010 J. Phys. Chem. C 114 14781
|
[4] |
Yao Y H and Cao Q X 2012 Chin. Phys. B 21 124205
|
[5] |
Pan F, Guo Y, Cheng F F, Fa T and Yao S D 2011 Chin. Phys. B 20 127501
|
[6] |
Zhang Q, Dandeneau C S, Zhou X and Cao G 2009 Adv. Mater. 21 4087
|
[7] |
Lupan O, Ursaki V, Chai G, Chow L, Emelchenko G A, Tiginyanu I M, Gruzintsev A N and Redkin A N 2010 Sensor. Actuat. B 144 56
|
[8] |
Wang X, Song J, Liu J and Wang Z L 2007 Science 316 102
|
[9] |
Lee J, Kang B S, Hicks B, Chancellor T F, Chu B H, Wang H T, Keselowsky B G, Ren F and Lele T P 2008 Biomaterials 39 3743
|
[10] |
Ohtaki M, Tsubota T, Eguchi K and Arai H 1996 J. Appl. Phys. 79 1816
|
[11] |
Cheng H, Xu X J and Hng H H 2009 J. Am. Ceram. Int. 35 3067
|
[12] |
Zhou H M, Yi D Q, Yu Z M, Xiao L R and Li J 2007 Thin Solid Films 515 6909
|
[13] |
Srinivasan G, Rajendra Kumar R T and Kumar J 2007 Opt. Mater. 30 314
|
[14] |
Arredondo E J L, Maldonado A, Asomoza R, Acosta D R, Lira M A M, de la M and Olvera L 2005 Thin Solid Films 490 132
|
[15] |
Fathollahi V and Amini M M 2001 Mater. Lett. 50 235
|
[16] |
Chen K J, Fang T H, Hung F Y, Ji L W, Chang S J, Young S J and Hsiao Y J 2008 Appl. Surf. Sci. 254 5791
|
[17] |
Olorunyolemi T, Birnboim A, Carmel Y, Wilson O C and Lloyd I K 2002 J. Am. Ceram. Soc. 85 1249
|
[18] |
Alvarez-Quintana J, Martínez E, Pérez-Tijerina E, Pérez-García S A and Rodríguez-Viejo J 2010 J. Appl. Phys. 107 063713
|
[19] |
Huang Z X, Tang Z A, Yu J and Bai S 2011 Physica B 406 084320
|
[20] |
Xu Y, Goto M, Kato R, Tanaka Y and Kagawa Y 2012 J. Appl. Phys. 111 818
|
[21] |
Tan Z C and Di Y Y 2006 Prog. Chem. 18 1234
|
[22] |
Abdalla S, Easawi K, El-Brolossy T A, Yossef G M, Negm S and Talaat H 2003 Rev. Sci. Instrum. 74 848
|
[23] |
Philip A, Joseph L K, Irimpan M L, Krishnan B, Radhakrishnan P, Nampoori V P N and Natarajan R 2007 Phys. Stat. Sol. (a) 204 737
|
[24] |
Jothi Rajan M A, Vivekanandam T S, Radhakrishman S K, Ramachandran K and Umapathy S 2004 J. Appl. Polym. Sci. 93 1071
|
[25] |
Jothi Rajan M A, Mathavan T, Vivekanandam T S and Umapathy S 2006 J. Appl. Polym. Sci. 100 3756
|
[26] |
Bonno B, Laportp J and Rousset Y 1980 J. Appl. Phys. 67 2253
|
[27] |
Poult P and Chambron J 1989 J. Appl. Phys. 51 1738
|
[28] |
Zhan Y, Zhou X, Fua B and Chen Y 2011 J. Hazard. Mater. 187 348
|
[29] |
Saber O, El-Brolossy T A and Al Jaafari A A 2012 Water Air Soil Poll. 223 4615
|
[30] |
Sanchez-L Vega A, Salazar A, Ocariz A, Ponier L, Gomez W, Viuar L M and Mawcho E 1997 Appl. Phys. A 65 15
|
[31] |
Raman S S, Nampoori V P N, Vallabhan C P G, Ambadas G and Sugunan S 1995 Appl. Phys. Lett. 67 2939
|
[32] |
El-Brolossy T A 2012 Indian J. Phys. 86 39
|
[33] |
Gadzhiev G G 2003 High Temperature 41 778
|
[34] |
Wang L, Tan Z, Meng S, Liang D and Li G 2001 J. Nanoparticle Res. 3 483
|
[35] |
Wang L, Tan Z, Meng S, Druzhinina A, Varushchenco R A and Li G 2001 J. Non-Cryst. Solids 296 139
|
[36] |
Baletto F and Ferando R 2005 Rev. Mod. Phys. 77 371
|
[37] |
Tan Z, Wang L and Shi Q 2009 Pure Appl. Chem. 81 1871
|
[38] |
Tschöpe A and Birringer R 1993 Acta Metall. Mater. 41 2791
|
[39] |
Xu Y, Goto M, Kato R, Tanaka Y and Kagawa Y 2012 J. Appl. Phys. 111 084320
|
[40] |
Zhao Y M, Zhu C L, Wang S G, Tian J Z, Yang D J, Chen C K, Cheng H and Hing P 2004 J. Appl. Phys. 96 4563
|
[41] |
Landauer R 1952 J. Appl. Phys. 23 779
|
[42] |
Poulier C, Smith D S and Absi J 2007 J. Eur. Ceram. Soc. 27 475
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|