CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Low-cost, high performance surface plasmon resonance-compatible films characterized by surface plasmon resonance technique |
Li Song-Quan (李松权), Ye Hong-An (叶红安), Liu Chun-Yu (柳春郁), Dou Yin-Feng (窦寅丰), Huang Yan (黄妍) |
School of Electronic Engineering, Heilongjiang University, Harbin 150080, China |
|
|
Abstract A new analytical method based on the surface plasmon resonance (SPR) technique is presented, with which SPR curves for both wavelength and angular modulations can be obtained simultaneously via only a single scan of the incident angle. Using this method, the SPR responses of TiO2-coated Cu films are characterized in the wavelength range from 600 nm to 900 nm. For the first time, we determine the effective optical constants and the thicknesses of TiO2-coated Cu films using the SPR curves of wavelength modulation. The sensitivities of prism-based SPR refractive index sensors using TiO2-coated Cu films are investigated theoretically for both wavelength and angular modulations, the results show that in the case of sensitivity with wavelength modulation, TiO2-coated Cu films are not as good as the Au film, however, they are more suitable than the Au film for SPR refractive index sensors with angular modulation because a higher sensitivity can be achieved.
|
Received: 25 December 2012
Revised: 18 January 2013
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177079) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205071). |
Corresponding Authors:
Ye Hong-An
E-mail: yehonganhlj@gmail.com
|
Cite this article:
Li Song-Quan (李松权), Ye Hong-An (叶红安), Liu Chun-Yu (柳春郁), Dou Yin-Feng (窦寅丰), Huang Yan (黄妍) Low-cost, high performance surface plasmon resonance-compatible films characterized by surface plasmon resonance technique 2013 Chin. Phys. B 22 077302
|
[1] |
Rhodes C, Franzen S, Maria J P, Losego M, Leonard D N, Laughlin B, Duscher G and Weibel S 2006 J. Appl. Phys. 100 054905
|
[2] |
Franzen S 2008 J. Phys. Chem. C 112 6027
|
[3] |
Rhodes C, Cerruti M, Efremenko A, Losego M, Aspnes D E, Maria J P and Franzen S 2008 J. Appl. Phys. 103 093108
|
[4] |
Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J P and Aspnes D E 2009 Opt. Lett. 34 2867
|
[5] |
Losego M D, Efremenko A Y, Rhodes C L, Cerruti M G, Franzen S and Maria J P 2009 J. Appl. Phys. 106 024903
|
[6] |
Noginov M A, Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A and Podolskiy V A 2011 Appl. Phys. Lett. 99 021101
|
[7] |
Chen N C, Lien W C, Liu C R, Huang Y L, Lin Y R, Chou C, Chang S Y and Ho C W 2011 J. Appl. Phys. 109 043104
|
[8] |
Soref R, Peale R E and Buchwald W 2008 Opt. Express 16 6507
|
[9] |
Guske J T, Brown J, Welsh A and Franzen S 2012 Opt. Express 20 23215
|
[10] |
Otto A and Sohler W 1975 Solid State Commun. 16 1319
|
[11] |
Fontana E, Pantell R H and Moslehi M 1988 Appl. Opt. 27 3334
|
[12] |
Tamm I R, Dawson P, Connolly M P, Raza S H and Gamble H S 1991 J. Mod. Opt. 38 1593
|
[13] |
Mcneill D A, Morrow T and Dawson P 1998 Appl. Surf. Sci. 127-129 46
|
[14] |
Cairns G F, Mcneill D A and Dawson P 1999 Surf. Sci. 429 117
|
[15] |
Ma S M, Han B M, Jo J H and Chang S 2000 J. Korean Phys. Soc. 37 788
|
[16] |
Mitsushio M, Watanabe K, Abe Y and Higo M 2006 Sens. Actuators A 125 296
|
[17] |
Jha R and Sharma A K 2009 Opt. Lett. 34 749
|
[18] |
Mitsushio M, Watanabe K, Abe Y and Higo M 2010 Sens. Actuators A 163 1
|
[19] |
Diaz-Herrera N, Gonzalez-Cano A, Viegas D and Santos J L 2010 Sens. Actuators B 146 195
|
[20] |
Schulz L G 1954 J. Opt. Soc. Am. 44 358
|
[21] |
Roberts S 1960 Phys. Rev. 118 1509
|
[22] |
Ehrenreich H and Phillip H R 1962 Phys. Rev. 128 1622
|
[23] |
Stoll M Ph 1969 J. Appl. Phys. 40 4533
|
[24] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[25] |
Johnson P B and Christy R W 1974 Phys. Rev. B 11 1315
|
[26] |
Hanekamp L J, Lisowski W and Bootsma G A 1982 Surf. Sci. 118 1
|
[27] |
Doremus R, Shou C K and Garcia R 1992 Appl. Opt. 31 5773
|
[28] |
Dobierzewska-Mozrzymas E and Bieganski P 1993 Appl. Opt. 32 2345
|
[29] |
Urban III F K, Hosseini-Tehrani A, Khabari A, Griffiths P and Fernandez G 1999 Thin Solid Films 355-356 513
|
[30] |
Stahrenberg K, Herrmann Th, Wilmers K, Esser N and Richter W 2001 Phys. Rev. B 64 115111
|
[31] |
Du H, Lee S W, Gong J, Sun C and Wen L S 2004 Mater. Lett. 58 1117
|
[32] |
Chan G H, Zhao J, Hicks E M, Schatz G C and Van Duyne R P 2007 Nano Lett. 7 1947
|
[33] |
Zynio S A, Samoylov V, Surovtseva E R, Mirsky V M and Shirshov Y M 2002 Sensors 2 62
|
[34] |
Ong B H, Yuan X, Tjin S C, Zhang J and Ng H M 2006 Sens. Actuators B 114 1028
|
[35] |
Gupta B D and Sharma A K 2005 Sens. Actuators B 107 40
|
[36] |
Chen X and Jiang K 2010 Opt. Express 18 1105
|
[37] |
Lee A H, Roh S Y and Park J H 2009 Opt. Fiber Technol. 15 209
|
[38] |
Manera M G, Leo G, Curri M L, Cozzoli P D, Rella R, Siciliano P, Agostiano A and Vasanelli L 2004 Sens. Actuators B 100 75
|
[39] |
Manera M G, Cozzoli P D, Curri M L, Leo G, Rella R, Agostiano A and Vasanelli L 2005 Synth. Met. 148 25
|
[40] |
Manera M G, Leo G, Curri M L, Comparelli R, Rella R, Agostiano A and Vasanelli L 2006 Sens. Actuators B 115 365
|
[41] |
Manera M G, Cozzoli P D, Leo G, Curri M L, Agostiano A, Vasanelli L and Rella R 2007 Sens. Actuators B 126 562
|
[42] |
Manera M G, Spadavecchia J, Buso D, Julian Fernandez C de, Mattei G, Martucci A, Mulvaney P, Perez-Juste J, Rella R, Vasanelli L and Mazzoldi P 2008 Sens. Actuators B 132 107
|
[43] |
Manera M G, Taurino A, Catalano M, Rella R, Caricato A P, Buonsanti R, Cozzoli P D and Martino M 2012 Sens. Actuators B 161 869
|
[44] |
Manera M G and Rella R 2013 Sens. Actuators B 179 175
|
[45] |
Innes R A and Sambles J R 1987 J. Phys. F: Met. Phys. 17 277
|
[46] |
Zhang S, Berguiga L, Elezgaray J, Roland T, Faivre-Moskalenko C and Argoul F 2007 Surf. Sci. 601 5445
|
[47] |
Gu J H, Cao Z Q, Shen Q S and Chen G 2008 J. Phys. D: Appl. Phys. 41 155309
|
[48] |
Lee W J, Kim J E, Park H Y, Park S, Kim M S, Kim J T and Ju J J 2008 J. Appl. Phys. 103 073713
|
[49] |
Levesque L 2011 Opt. Laser Technol. 43 14
|
[50] |
Velinov T, Ahtapodov L, Nelson A, Gateshki M and Bivolarska M 2011 Thin Solid Films 519 2093
|
[51] |
Homola J, Yee S S and Gauglitz G 1999 Sens. Actuators B 54 3
|
[52] |
Huang Y, Ye H A, Li S Q and Dou Y F 2013 Chin. Phys. B 22 027301
|
[53] |
Zhang F and Zhong J G 2006 J. Optoelectronics. Laser 17 211
|
[54] |
Shalabney A and Abdulhalim I 2010 Sens. Actuators A 159 24
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|