Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077302    DOI: 10.1088/1674-1056/22/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-cost, high performance surface plasmon resonance-compatible films characterized by surface plasmon resonance technique

Li Song-Quan (李松权), Ye Hong-An (叶红安), Liu Chun-Yu (柳春郁), Dou Yin-Feng (窦寅丰), Huang Yan (黄妍)
School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
Abstract  A new analytical method based on the surface plasmon resonance (SPR) technique is presented, with which SPR curves for both wavelength and angular modulations can be obtained simultaneously via only a single scan of the incident angle. Using this method, the SPR responses of TiO2-coated Cu films are characterized in the wavelength range from 600 nm to 900 nm. For the first time, we determine the effective optical constants and the thicknesses of TiO2-coated Cu films using the SPR curves of wavelength modulation. The sensitivities of prism-based SPR refractive index sensors using TiO2-coated Cu films are investigated theoretically for both wavelength and angular modulations, the results show that in the case of sensitivity with wavelength modulation, TiO2-coated Cu films are not as good as the Au film, however, they are more suitable than the Au film for SPR refractive index sensors with angular modulation because a higher sensitivity can be achieved.
Keywords:  surface plasmon resonance      optical constants      thin film  
Received:  25 December 2012      Revised:  18 January 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177079) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205071).
Corresponding Authors:  Ye Hong-An     E-mail:  yehonganhlj@gmail.com

Cite this article: 

Li Song-Quan (李松权), Ye Hong-An (叶红安), Liu Chun-Yu (柳春郁), Dou Yin-Feng (窦寅丰), Huang Yan (黄妍) Low-cost, high performance surface plasmon resonance-compatible films characterized by surface plasmon resonance technique 2013 Chin. Phys. B 22 077302

[1] Rhodes C, Franzen S, Maria J P, Losego M, Leonard D N, Laughlin B, Duscher G and Weibel S 2006 J. Appl. Phys. 100 054905
[2] Franzen S 2008 J. Phys. Chem. C 112 6027
[3] Rhodes C, Cerruti M, Efremenko A, Losego M, Aspnes D E, Maria J P and Franzen S 2008 J. Appl. Phys. 103 093108
[4] Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J P and Aspnes D E 2009 Opt. Lett. 34 2867
[5] Losego M D, Efremenko A Y, Rhodes C L, Cerruti M G, Franzen S and Maria J P 2009 J. Appl. Phys. 106 024903
[6] Noginov M A, Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A and Podolskiy V A 2011 Appl. Phys. Lett. 99 021101
[7] Chen N C, Lien W C, Liu C R, Huang Y L, Lin Y R, Chou C, Chang S Y and Ho C W 2011 J. Appl. Phys. 109 043104
[8] Soref R, Peale R E and Buchwald W 2008 Opt. Express 16 6507
[9] Guske J T, Brown J, Welsh A and Franzen S 2012 Opt. Express 20 23215
[10] Otto A and Sohler W 1975 Solid State Commun. 16 1319
[11] Fontana E, Pantell R H and Moslehi M 1988 Appl. Opt. 27 3334
[12] Tamm I R, Dawson P, Connolly M P, Raza S H and Gamble H S 1991 J. Mod. Opt. 38 1593
[13] Mcneill D A, Morrow T and Dawson P 1998 Appl. Surf. Sci. 127-129 46
[14] Cairns G F, Mcneill D A and Dawson P 1999 Surf. Sci. 429 117
[15] Ma S M, Han B M, Jo J H and Chang S 2000 J. Korean Phys. Soc. 37 788
[16] Mitsushio M, Watanabe K, Abe Y and Higo M 2006 Sens. Actuators A 125 296
[17] Jha R and Sharma A K 2009 Opt. Lett. 34 749
[18] Mitsushio M, Watanabe K, Abe Y and Higo M 2010 Sens. Actuators A 163 1
[19] Diaz-Herrera N, Gonzalez-Cano A, Viegas D and Santos J L 2010 Sens. Actuators B 146 195
[20] Schulz L G 1954 J. Opt. Soc. Am. 44 358
[21] Roberts S 1960 Phys. Rev. 118 1509
[22] Ehrenreich H and Phillip H R 1962 Phys. Rev. 128 1622
[23] Stoll M Ph 1969 J. Appl. Phys. 40 4533
[24] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[25] Johnson P B and Christy R W 1974 Phys. Rev. B 11 1315
[26] Hanekamp L J, Lisowski W and Bootsma G A 1982 Surf. Sci. 118 1
[27] Doremus R, Shou C K and Garcia R 1992 Appl. Opt. 31 5773
[28] Dobierzewska-Mozrzymas E and Bieganski P 1993 Appl. Opt. 32 2345
[29] Urban III F K, Hosseini-Tehrani A, Khabari A, Griffiths P and Fernandez G 1999 Thin Solid Films 355-356 513
[30] Stahrenberg K, Herrmann Th, Wilmers K, Esser N and Richter W 2001 Phys. Rev. B 64 115111
[31] Du H, Lee S W, Gong J, Sun C and Wen L S 2004 Mater. Lett. 58 1117
[32] Chan G H, Zhao J, Hicks E M, Schatz G C and Van Duyne R P 2007 Nano Lett. 7 1947
[33] Zynio S A, Samoylov V, Surovtseva E R, Mirsky V M and Shirshov Y M 2002 Sensors 2 62
[34] Ong B H, Yuan X, Tjin S C, Zhang J and Ng H M 2006 Sens. Actuators B 114 1028
[35] Gupta B D and Sharma A K 2005 Sens. Actuators B 107 40
[36] Chen X and Jiang K 2010 Opt. Express 18 1105
[37] Lee A H, Roh S Y and Park J H 2009 Opt. Fiber Technol. 15 209
[38] Manera M G, Leo G, Curri M L, Cozzoli P D, Rella R, Siciliano P, Agostiano A and Vasanelli L 2004 Sens. Actuators B 100 75
[39] Manera M G, Cozzoli P D, Curri M L, Leo G, Rella R, Agostiano A and Vasanelli L 2005 Synth. Met. 148 25
[40] Manera M G, Leo G, Curri M L, Comparelli R, Rella R, Agostiano A and Vasanelli L 2006 Sens. Actuators B 115 365
[41] Manera M G, Cozzoli P D, Leo G, Curri M L, Agostiano A, Vasanelli L and Rella R 2007 Sens. Actuators B 126 562
[42] Manera M G, Spadavecchia J, Buso D, Julian Fernandez C de, Mattei G, Martucci A, Mulvaney P, Perez-Juste J, Rella R, Vasanelli L and Mazzoldi P 2008 Sens. Actuators B 132 107
[43] Manera M G, Taurino A, Catalano M, Rella R, Caricato A P, Buonsanti R, Cozzoli P D and Martino M 2012 Sens. Actuators B 161 869
[44] Manera M G and Rella R 2013 Sens. Actuators B 179 175
[45] Innes R A and Sambles J R 1987 J. Phys. F: Met. Phys. 17 277
[46] Zhang S, Berguiga L, Elezgaray J, Roland T, Faivre-Moskalenko C and Argoul F 2007 Surf. Sci. 601 5445
[47] Gu J H, Cao Z Q, Shen Q S and Chen G 2008 J. Phys. D: Appl. Phys. 41 155309
[48] Lee W J, Kim J E, Park H Y, Park S, Kim M S, Kim J T and Ju J J 2008 J. Appl. Phys. 103 073713
[49] Levesque L 2011 Opt. Laser Technol. 43 14
[50] Velinov T, Ahtapodov L, Nelson A, Gateshki M and Bivolarska M 2011 Thin Solid Films 519 2093
[51] Homola J, Yee S S and Gauglitz G 1999 Sens. Actuators B 54 3
[52] Huang Y, Ye H A, Li S Q and Dou Y F 2013 Chin. Phys. B 22 027301
[53] Zhang F and Zhong J G 2006 J. Optoelectronics. Laser 17 211
[54] Shalabney A and Abdulhalim I 2010 Sens. Actuators A 159 24
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[6] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[7] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[8] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[9] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[10] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[11] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[12] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[13] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[14] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[15] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
No Suggested Reading articles found!