Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077201    DOI: 10.1088/1674-1056/22/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A comparison of the transport properties of bilayer graphene, monolayer graphene, and two-dimensional electron gas

Sun Li-Feng (孙立风)a, Dong Li-Min (董利民)b, Wu Zhi-Fang (吴志芳)a, Fang Chao (房超)a
a Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
b Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract  We studied and compared the transport properties of charge carriers in the bilayer graphene, the monolayer graphene, and the conventional semiconductors (the two-dimensional electron gas (2DEG)). It is elucidated that the normal incidence transmission in the bilayer graphene is identical to that in the 2DEG but totally different from that in the monolayer graphene. However, the resonant peaks appear in the non-normal incidence transmission profile for a high barrier in the bilayer graphene, which do not occur in the 2DEG. Furthermore, there are tunneling and forbidden regions in the transmission spectrum for each material, and the division of the two regions has been given in the work. The tunneling region covers a wide range of the incident energy for the two graphene systems, but only exists under specific conditions for the 2DEG. The counterparts of the transmission in the conductance profile are also given for the three materials, which may be used as high-performance devices based on the bilayer graphene.
Keywords:  bilayer graphene      monolayer graphene      two-dimensional electron gas (2DEG)      transport properties  
Received:  22 January 2013      Revised:  25 February 2013      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.Ad (Ballistic transport)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104156), the Postdoctoral Science Foundation of China (Grant No. 2012M510405), the Independent Research and Development Fund of Tsinghua University, China (Grant No. 20121087948), and the Beijing Key Lab of Fine Ceramics Opening Fund, China (Grant No. 2012200110).
Corresponding Authors:  Fang Chao     E-mail:  fangchao@mail.tsinghua.edu.cn

Cite this article: 

Sun Li-Feng (孙立风), Dong Li-Min (董利民), Wu Zhi-Fang (吴志芳), Fang Chao (房超) A comparison of the transport properties of bilayer graphene, monolayer graphene, and two-dimensional electron gas 2013 Chin. Phys. B 22 077201

[1] Beenakker C W 2008 Rev. Mod. Phys. 80 1337
[2] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V and Firsov A A 2004 Science 306 666
[4] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Zhang Y, Jiang Z, Small J P, Purewal M S, Tan Y W, Fazlollahi M, Chudow J D, Jaszczak J A, Stormer H L and Kim P 2006 Phys. Rev. Lett. 96 136806
[6] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620
[7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Gregorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[8] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[9] McCann E and Falko V I 2006 Phys. Rev. Lett. 96 086805
[10] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[11] Zhang Y, Small J P, Amori M E S and Kim P 2005 Phys. Rev. Lett. 94 176803
[12] Novoselov K S, McCann E, Mozorov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nature Phys. 2 177
[13] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[14] Katsnelson M I 2006 Eur. Phys. J. B 52 151
[15] Hu S J, Du W, Zhang G P, Gao M, Lu Z Y and Wang X Q 2012 Chin. Phys. Lett. 29 057201
[16] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[17] Bhattacharjee S and Sengupta K 2006 Phys. Rev. Lett. 97 217001
[18] Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430
[19] McCann E 2006 Phys. Rev. B 74 161403
[20] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[21] Oostinga J B, Heersche H B, Liu X, Morpurgo A and Vandersypen L M K 2008 Nature Mater. 7 151
[22] Castro E V, Novoselov K S, Morozov S V, Peres N M R, Lopes dos Santos J, Nilsson J, Guinea F, Geim A K and Castro Neto A H 2007 Phys. Rev. Lett. 99 216802
[23] San-Jose P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204
[24] Nilsson J, Castro Neto A H, Guinea F and Peres N M R 2007 Phys. Rev. B 76 165416
[25] Masir M R, Vasilopoulos P and Peeters F M 2009 Phys. Rev. B 79 035409
[26] Park S H and Sim H S 2009 Phys. Rev. Lett. 103 196802
[27] Mikitik G P and Sharlai Yu V 2008 Phys. Rev. B 77 113407
[28] Mukhopadhyay S, Biswas R and Sinha C 2010 Phys. Status Solidi B 247 342
[29] Chen X and Tao J W 2009 Appl. Phys. Lett. 94 262102
[30] Sun L F and Guo Y 2011 J. Appl. Phys. 109 123719
[31] Zhang G P and Qin Z J 2011 Chem. Phys. Lett. 516 225
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[3] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[4] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[5] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[6] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[7] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[8] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[9] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[10] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[13] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[14] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[15] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
No Suggested Reading articles found!