Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077701    DOI: 10.1088/1674-1056/22/7/077701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder

Wang Jing-Xue (王景雪), Liu Mei-Feng (刘美风), Yan Zhi-Bo (颜志波), Liu Jun-Ming (刘俊明)
Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The ferroelectric transitions of several SrTiO3-based ferroelectrics are investigated experimentally and theoretically, with special attention to the critical scaling exponents associated with the phase transitions, in order to understand the competition among quantum fluctuations (QFs), quenched disorder, and ferroelectric ordering. Two representative systems with sufficiently strong QFs and quenched disorders in competition with the ferroelectric ordering are investigated. We start from non-stoichiometric SrTiO3 (STO) with the Sr/Ti ratio deviating slightly from one, which is believed to maintain strong QFs. Then, we address Ba/Ca co-doped Sr1-x(Ca0.6389Ba0.3611)xTiO3 (SCBT) with the averaged Sr-site ionic radius identical to the Sr2+ ionic radius, which is believed to offer remarkable quenched disorder associated with the Sr-site ionic mismatch. The critical exponents associated with polarization P and dielectric susceptibility ε, respectively, as functions of temperature T close to the critical point Tc, are evaluated. It is revealed that both non-stoichiometric SrTiO3 and SCBT exhibit much bigger critical exponents than the Landau mean-field theory predictions. These critical exponents then decrease gradually with increasing doping level or deviation of Sr/Ti ratio from one. A transverse Ising model applicable to the Sr-site doped STO (e.g., Sr1-xCaxTiO3) at low level is used to explain the observed experimental data. It is suggested that the serious deviation of these critical exponents from the Landau theory predictions in these STO-based systems is ascribed to the significant QFs and quenched disorder by partially suppressing the long-range spatial correlation of electric dipoles around the transitions. The present work thus sheds light on our understanding of the critical behaviors of ferroelectric transitions in STO in the presence of quantum fluctuations and quenched disorder, whose effects have been demonstrated to be remarkable.
Keywords:  critical exponents      quantum fluctuations      ferroelectric phase transitions  
Received:  18 February 2013      Revised:  14 March 2013      Accepted manuscript online: 
PACS:  77.22.-d (Dielectric properties of solids and liquids)  
  77.80.B- (Phase transitions and Curie point)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB922101 and 2009CB623303), the National Natural Science Foundation of China (Grant Nos. 11234005 and 11074113), and the Priority Academic Development Program of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Liu Jun-Ming     E-mail:  liujm@nju.edu.cn

Cite this article: 

Wang Jing-Xue (王景雪), Liu Mei-Feng (刘美风), Yan Zhi-Bo (颜志波), Liu Jun-Ming (刘俊明) Critical exponents of ferroelectric transitions in modulated SrTiO3:Consequences of quantum fluctuations and quenched disorder 2013 Chin. Phys. B 22 077701

[1] Bruce A D and Cowley R A 1981 Structural Phase Transitions (London: Taylor and Francis)
[2] Cowley R A 1980 Adv. Phys. 29 1
[3] Schneider T, Beck H and Stoll E 1976 Phys. Rev. B 13 1123
[4] Gonzalo J A 1968 Phys. Rev. Lett. 21 749
[5] Stamenković S, Plakida N M, Aksienov V L and Siklós T 1977 Acta Physica Academiae Scientiarum Hungaricae Tomus. 43 99
[6] Gonzalo J A 1966 Phys. Rev. 144 662
[7] Reese W and May L F 1967 Phys. Rev. 162 510
[8] Schell U and Müser H E 1987 Z. Phys. B: Condens. Matter. 66 237
[9] Dec J and Kleemann W 1998 Solid State Commun. 106 695
[10] Mènoret C, Kiat J M, Dkhil B, Dunlop M, Dammak H and Hernandez O 2002 Phys. Rev. B 65 224104
[11] Wang Y G, Kleemann W, Zhong W L and Zhang L 1998 Phys. Rev. B 57 13343
[12] Kleemann W, Dec J and Westwa\acutenki B 1998 Phys. Rev. B 58 8985
[13] Wang Y G, Kleemann W, Dec J and Zhong W L 1998 Europhys. Lett. 42 173
[14] Zhang L, Kleemann W and Zhong W L 2002 Phys. Rev. B 66 104105
[15] Prosandeev S A, Maslennikov A E, Kleemann W and Dec J 2000 Ferroelectrics 238 171
[16] Venturini E L, Samara G A and Kleemann W 2003 Phys. Rev. B 67 214102
[17] Kleemann W, Dec J, Wang W and Itoh M 2003 Phys. Rev. B 67 092107
[18] Dec J, Kleemann W and Itoh M 2005 Phys. Rev. B 71 144113
[19] Dec J, Kleemann W and Itoh M 2006 Ferroelectrics 337 13
[20] Venturini E L, Samara G A, Itoh M and Kleemann W 2003 Fundamental Physics of Ferroelectrics 2003 AIP Conf. Proc. 677 1
[21] Fleury P A and Worlock J M 1968 Phys. Rev. 174 613
[22] Martin T D 1997 American Mineralogist 82 213
[23] Kanyuka A K and Glukhov V S 1996 Physica A 232 417
[24] Kanyuka A K and Glukhov V S 1997 Physica A 237 331
[25] Chen W and Cao W Q 2012 Acta Phys. Sin. 61 097701 (in Chinese)
[26] Ahart M, Hushur A, Bing Y, Ye Z G, Hemley R J and Kojima S 2009 Appl. Phys. Lett. 94 142906
[27] Scott J F 2006 J. Phys.: Condens. Matter 18 7123
[28] Kleemann W 2006 J. Phys.: Condens. Matter 18 L523
[29] Luo Z H, Cao X J and Yu C F 2011 Chin. Phys. B 20 067103
[30] Wei T, Liu J M, Zhou Q J and Song Q G 2011 Phys. Rev. B 83 052101
[31] Wei T, Zhu C, Wang K F, Cai H L, Zhu J S and Liu J M 2008 J. Appl. Phys. 103 124104
[32] Müller K A and Burkard H 1979 Phys. Rev. B 19 3593
[33] Barrett J H 1952 Phys. Rev. 86 118
[34] Guo Y J, Wei T, Zhu C, Wang K F, Gao X S, Guan Y Q and Liu J M 2010 J. Appl. Phys. 107 074106
[35] Guo Y J, Guo Y Y, Lin L, Gao Y J, Jin B B, Kang L and Liu J M 2012 Phys. Rev. B 86 014202
[36] Guo Y Y, Liu H M, Yu D P and Liu J M 2012 Phys. Rev. B 85 104108
[37] Peng Y P, Wang F X, Zhang L, Peng Y P, Wang C L and Wang Q 1999 Chin. Phys. Lett. 16 214
[38] Rowley S E, Spalek L J, Smith R P, Dean M P M, Lonzarich G G, Scott J F and Saxena S S 2009 Quantum Criticality in Ferroelectrics arXiv:0903.1445 [cond-mat.str-el]
[39] Luo S J, Wang K F, Li S Z, Dong X W, Yan Z B, Cai H L and Liu J M 2009 Appl. Phys. Lett. 94 172504
[40] Zhang N, Wang K F, Luo S J, Wei T, Dong X W, Li S Z, Wan J G and Liu J M 2010 Appl. Phys. Lett. 96 252902
[41] Yacoby Y and Just S 1974 Solid State Commun. 15 715
[42] Yacoby Y and Stern E A 1992 Ferroelectrics 99 263
[43] Bednorz J G and Müller K A 1984 Phys. Rev. Lett. 52 2289
[44] Vojta T and Sknepnek R 2004 Phys. Stat. Sol. (b) 241 2118
[45] Wei T, Guo Y J, Wang P W, Yu D P, Wang K F, Lu C L and Liu J M 2008 Appl. Phys. Lett. 92 172912
[46] Sachdev S 2011 Quantum Phase Transitions (New York: Cambridge University Press)
[47] Shopova D V and Uzunov D I 2003 Phys. Rep. 379 1
[48] Sperstad I B, Stiansen E B and Sudbo A 2012 Phys. Rev. B 85 214302
[49] Continentino M A 2011 Braz. J. Phys. 41 201
[50] Morf R, Schneider T and Stoll E 1977 Phys. Rev. B 16 462
[51] Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (Oxford: Clarendon)
[52] Yuan M, Wang C L, Wang Y X, Ali R and Zhang J L 2003 Solid State Commun. 127 419
[53] Müller K A and Berlinger W 1971 Phys. Rev. Lett. 26 13
[54] Scott J F 2007 Ferroelectrics 349 157
[1] Computational study of inverse ferrite spinels
A EL Maazouzi, R Masrour, A Jabar, M Hamedoun. Chin. Phys. B, 2019, 28(5): 057504.
[2] Properties of ground state and anomalous quantum fluctuations in one-dimensional polaron–soliton systems—the effects of electron-two-phonon interaction and non-adiabatic quantum correlations
Luo Zhi-Hua(罗质华), Cao Xi-Jin(曹锡金), and Yu Chao-Fan(余超凡). Chin. Phys. B, 2011, 20(6): 067103.
[3] Quantum fluctuations of the antiferro-antiferromagnetic double-layer
Jiang Wei(姜伟), Zhu Cheng-Bo(朱程博), Yu Gui-Hong(于桂红), and Lo Veng-Cheong(罗永祥). Chin. Phys. B, 2009, 18(8): 3547-3550.
No Suggested Reading articles found!