Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077505    DOI: 10.1088/1674-1056/22/7/077505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

Chen Lei (陈蕾), Li Ping (李平), Wen Yu-Mei (文玉梅), Zhu Yong (朱永)
Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Abstract  As magnetoelectric (ME) effect in the piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to Δ E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz ≤qslant fr ≤qslant 33.96 kHz. In addition, with the thickness of FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers the means by adjusting the strength of dc magnetic bias or the thicknesses of FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composites design for real applications.
Keywords:  magnetoelectric effect      bending resonance frequency      composite materials  
Received:  10 October 2012      Revised:  27 December 2012      Accepted manuscript online: 
PACS:  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.80.+q (Magnetomechanical effects, magnetostriction)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  77.84.Lf (Composite materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 61071042) and the National High Technology Research and Development Program of China (Grant No. 2012AA040602).
Corresponding Authors:  Li Ping     E-mail:  liping@cqu.edu.cn

Cite this article: 

Chen Lei (陈蕾), Li Ping (李平), Wen Yu-Mei (文玉梅), Zhu Yong (朱永) Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites 2013 Chin. Phys. B 22 077505

[1] van Suchtelen J 1972 Product properties: A new application of composite materials, Philips Res. Rep 27 28
[2] Folen V J, Rado G T and Stalder E W 1961 Phys. Rev. Lett. 6 607
[3] Filippov D A, Bichurin M I, Nan C W and Liu J M 2005 J. Appl. Phys. 97 113910
[4] Dong S X and Zhai J Y 2008 Chin. Sci. Bull. 53 2113
[5] Zhou J P, Zhao W, Guo Y Y, Liu P and Zhang H W 2009 2009 J. Appl. Phys. 105 063913
[6] Srinivasan G, De Vreugd C P, Laletin V M, Paddubnaya N, Bichurin M I, Petrov V M and Filippov D A 2005 Phys. Rev. B 71 184423
[7] Yang F, Wen Y M, Li P, Zheng M and Bian L X 2007 Acta Phys. Sin. 56 3539 (in Chinese)
[8] Li P, Wen Y M and Bian L X 2007 Appl. Phys. Lett. 90 022503
[9] Bian L X, Wen Y M, Li P, Gao Q L and Zheng M 2009 Sens. Actuator A-Phys. 150 207
[10] Bi Ke, Wu Wei and Wang Y G 2011 Chin. Phys. B 20 067503
[11] Chen L, Li P, Wen Y M and Wang P 2012 J. Appl. Phys. 112 024504
[12] Chen L, Li P and Wen Y M 2011 J. Alloys Compd. 509 4811
[13] Zhang Y F, Wen Y M, Li P and Bian L X 2009 Acta Phys. Sin. 58 0546 (in Chinese)
[14] Islam R A, Kim H, Priya S and Stephanou H 2006 Appl. Phys. Lett. 89 152908
[15] Fiebig M 2005 2005 J. Phys. D: Appl. Phys. 38 R123
[16] Bian L X, Wen Y M and Li P 2009 IEEE Sens. J. 9 45
[17] Yu H, Zeng M, Wang Y, Wan J G and Liu J M 2005 Appl. Phys. Lett. 86 032508
[18] Wang C H and Zhao Z Y 1982 Acta Acustica. 7 364 (in Chinese)
[19] Bi K, Wang Y G and Wu W 2011 Sens. Actuator A-Phys. 166 48
[20] Bi K, Wu W, Gu Q L, Cui H N and Wang Y G 2011 J. Alloys Compd. 509 5163
[21] Zhao C P, Fang F and Yang W 2010 Smart Mater. Struct. 19 125004
[22] Wan J G, Li Z Y, Wang Y, Zeng M, Wang G H and Liu J M 2005 Appl. Phys. Lett. 86 202504
[23] Clark A E and Savage H T 1975 IEEE Trans. Sonics Ultrason. SU-22 50
[24] Yoshizawa N, Yamamoto I and Shimada Y 2005 IEEE Trans. Magn. 41 435
[1] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[2] Insights into the regulation mechanism of ring-shaped magnetoelectric energy harvesters via mechanical and magnetic conditions
Yang Shi(师阳), Ni Li(李妮), and Yong Yang(杨勇). Chin. Phys. B, 2021, 30(10): 107503.
[3] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[4] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[5] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[6] Structural and optical properties of thermally reduced graphene oxide for energy devices
Ayesha Jamil, Faiza Mustafa, Samia Aslam, Usman Arshad, Muhammad Ashfaq Ahmad. Chin. Phys. B, 2017, 26(8): 086501.
[7] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[8] Magnetoelectric memory effect in the Y-type hexaferrite BaSrZnMgFe12O22
Fen Wang(王芬), Shi-Peng Shen(申世鹏), Young Sun(孙阳). Chin. Phys. B, 2016, 25(8): 087503.
[9] Realization of a flux-driven memtranstor at room temperature
Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳). Chin. Phys. B, 2016, 25(2): 027703.
[10] Modulation of electronic properties with external fields in silicene-based nanostructures
Li Geng (李庚), Zhao Yin-Chang (赵银昌), Zheng Rui (郑蕊), Ni Jun (倪军), Wu Yan-Ning (吴言宁). Chin. Phys. B, 2015, 24(8): 087302.
[11] Toward the complete relational graph of fundamental circuit elements
Shang Da-Shan (尚大山), Chai Yi-Sheng (柴一晟), Cao Ze-Xian (曹则贤), Lu Jun (陆俊), Sun Young (孙阳). Chin. Phys. B, 2015, 24(6): 068402.
[12] Lumped-equivalent circuit model for multi-stage cascaded magnetoelectric dual-tunable bandpass filter
Zhang Qiu-Shi (张秋实), Zhu Feng-Jie (朱锋杰), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(10): 107506.
[13] Modulation of magnetic properties and enhanced magnetoelectric effects in MnW1-xMoxO4 compounds
Fang Yong (房勇), Zhou Wei-Ping (周卫平), Song Yu-Quan (宋育全), Lü Li-Ya (吕丽娅), Wang Dun-Hui (王敦辉), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(7): 077502.
[14] Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field
Zhou Hao-Miao (周浩淼), Chen Qing (陈晴), Deng Juan-Hu (邓娟湖). Chin. Phys. B, 2014, 23(4): 047502.
[15] Self-biased magnetoelectric responses in magnetostrictive/piezoelectric composites with different high-permeability alloys
Lu Cai-Jiang (鲁彩江), Li Ping (李平), Wen Yu-Mei (文玉梅), Yang Ai-Chao (杨爱超), Yang Chao (杨超), Wang De-Cai (王德才), He Wei (何伟), Zhang Ji-Tao (张吉涛). Chin. Phys. B, 2014, 23(11): 117503.
No Suggested Reading articles found!