Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 076102    DOI: 10.1088/1674-1056/22/7/076102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Growth and characterization of straight InAs/GaAs nanowireheterostructures on Si substrate

Yan Xin (颜鑫), Zhang Xia (张霞), Li Jun-Shuai (李军帅), Lü Xiao-Long (吕晓龙), Ren Xiao-Min (任晓敏), Huang Yong-Qing (黄永清)
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Vertical InAs/GaAs nanowire (NW) heterostructures with a straight InAs segment have been successfully fabricated on Si (111) substrate by using AlGaAs/GaAs buffer layers coupled with a composition grading InGaAs segment. Both the GaAs and InAs segments are not limited by the misfit strain induced critical diameter. The low growth rate of InAs NWs is attributed to the AlGaAs/GaAs buffer layers which dramatically decrease the adatom diffusion contribution to the InAs NW growth. The crystal structure of InAs NW can be tuned from zincblende to wurtzite by controlling its diameter as well as the length of GaAs NWs. This work helps to open up a road for the integration of high-quality III-V NW heterostructures with Si.
Keywords:  nanowire      Si      buffer layer      adatom diffusion  
Received:  06 December 2012      Revised:  06 March 2013      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB327600), the National Natural Science Foundation of China (Grant Nos. 61020106007, 61077049, and 61211120195), the International Science and Technology Cooperation Program of China (Grant No. 2011DFR11010), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20120005110011), the Programme of Introducing Talents of Discipline to Universities (111 Program) of China (Grant No. B07005), and the Excellent Ph. D. Students Foundation of Beijing University of Posts and Telecommunications, China (Grant No. CX201213).
Corresponding Authors:  Zhang Xia     E-mail:  xzhang@bupt.edu.cn

Cite this article: 

Yan Xin (颜鑫), Zhang Xia (张霞), Li Jun-Shuai (李军帅), Lü Xiao-Long (吕晓龙), Ren Xiao-Min (任晓敏), Huang Yong-Qing (黄永清) Growth and characterization of straight InAs/GaAs nanowireheterostructures on Si substrate 2013 Chin. Phys. B 22 076102

[1] Yeh H J J and Smith J S 1994 IEEE Photon. Technol. Lett. 6 706
[2] Fang S F, Adomi K, Iyer S, Morkoc H, Zabel H, Choi C and Otsuka N 1990 J. Appl. Phys. 68 R31
[3] Ishiwara H, Hoshino T and Katahama H 1995 Mater. Chem. Phys. 40 225
[4] Komninou P, Stoemenos J, Dimitrakopulos G P and Karakostas T 1994 J. Appl. Phys. 75 143
[5] Glas F 2006 Phys. Rev. B 74 121302
[6] Roest A L, Verheijen M A, Wunnicke O, Serafin S, Wondergem H and Bakkers E P A M 2006 Nanotechnology 17 S271
[7] Huang H, Ren X M, Ye X, Guo J W, Wang Q, Yang Y S, Cai S W and Huang Y Q 2010 Nano Lett. 10 64
[8] Takeuchi T, Chang Y L, Tandon A, Bour D, Corzine S, Twist R, Tan M and Luan H C 2002 Appl. Phys. Lett. 80 2445
[9] Paladugu M, Zou J, Guo Y N, Auchterlonie G J, Joyce H J, Gao Q, Tan H H, Jagadish C and Kim Y 2007 Small 3 1873
[10] Messing M E, Wong J, Zanolli Z, Joyce H J, Tan H H, Gao Q, Wallenberg L R, Johansson J and Jagadish C 2011 Nano Lett. 11 3899
[11] Hiruma K, Murakoshi H, Yazawa M and Katsuyama T 1996 J. Cryst. Growth 163 226
[12] Caroff P, Dick K A, Johansson J, Messing M E, Deppert K and Samuelson L 2009 Nat. Nanotechnol. 4 50
[13] Johansson J, Dick K A, Caroff P, Messing M E, Bolinsson J, Deppert K and Samuelson L 2010 J. Phys. Chem. C 114 3837
[14] Shtrikman H, Popovitz R, Kretinin A, Houben L, Heiblum M, BukalM, Galicka M, Buczko R and Kacman P 2009 Nano Lett. 9 1506
[15] Joyce H J, Wong J, Gao Q, Tan H H and Jagadish C 2010 Nano Lett. 10 908
[16] Huang H, Ren X M, Lv J H, Wang Q, Song H L, Cai S W, Huang Y Q and Qu B 2008 J. Appl. Phys. 104 113114
[17] Cirlin G E, Dubrovskii V G, Soshnikov I P, Sibirev N V, Samsonenko Y B, Bouravleuv A D, Harmand J C and Glas F 2009 Phys. Status Solidi RRL 3 112
[18] Huang H, Ren X M, Ye X, Guo J W, Wang Q, Zhang X, Cai S W and Huang Y Q 2010 Nanotechnology 21 475602
[19] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
[20] Dubrovskii V G, Sibirev N V, Cirlin G E, Soshnikov I P, Chen W H, Larde R, Cadel E, Pareige P, Xu T, Grandidier B, Nys J P, Stievenard D, Moewe M, Chuang L C and Chang C 2009 Phys. Rev. B 79 205316
[21] Kim Y, Joyce H J, Gao Q, Tan H H, Jagadish C, Paladugu M, Zou J and Suvorova A A 2006 Nano Lett. 6 599
[22] Paladugu M, Zou J, Guo Y N, Zhang X, Joyce H J, Gao Q, Tan H H, Jagadish C and Kim Y 2009 Angew. Chem. Int. Ed. 48 780
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[7] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[8] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[9] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[10] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[11] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[12] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[13] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[14] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[15] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
No Suggested Reading articles found!