Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097802    DOI: 10.1088/1674-1056/adc6f7
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices Prev   Next  

Layer-dependent exciton dynamics in InSe/WS2 heterostructures

Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑)†
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  Understanding interlayer charge transfer is crucial for elucidating interface interactions in heterostructures. As the layer number can significantly influence the interface coupling and band alignment, the charge transfer behaviors can be largely regulated. Here, we constructed two-dimensional (2D) heterostructures consisting of monolayer WS$_{2}$ and few-layer InSe to investigate the impact of InSe thickness on exciton dynamics. We performed photoluminescence (PL) spectroscopy and lifetime measurements on pristine few-layer InSe and the heterostructures with different InSe thicknesses. For pristine InSe layers, we found a non-monotonic layer dependence on PL lifetime, which can be attributed to the interplay between the indirect-to-direct bandgap transition and surface recombination effects. For heterostructures, we demonstrated that the type I band alignment of the heterostructure facilitates electron and hole transfer from monolayer WS$_2$ to InSe. As the InSe layer number increases, the reduction in conduction band minimum (CBM) enhances the driving force for charge transfer, thereby improving the transfer efficiency. Furthermore, we fabricated and characterized a WS$_{2}$/InSe optoelectronic device. By analyzing bias voltage dependent PL spectra, we further demonstrated that the trions in WS$_{2}$ within the heterostructure are positively charged ($X^+$), and their emission intensity can be efficiently modulated by applying different biases. This study not only reveals the layer-dependent characteristics of band alignment and interlayer charge transfer in heterostructures but also provides valuable insights for the applications of 2D semiconductors in optoelectronic devices.
Keywords:  exciton      layer dependence      charge transfer      band alignment  
Received:  12 February 2025      Revised:  26 March 2025      Accepted manuscript online:  31 March 2025
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  71.35.-y (Excitons and related phenomena)  
  71.35.Pq (Charged excitons (trions))  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 92263107, U23A20570, 52221001, 62090035, and 52022029) and the Hunan Provincial Natural Science Foundation of China (Grant No. 2024RC1034).
Corresponding Authors:  Xiao Wang     E-mail:  xiao_wang@hnu.edu.cn

Cite this article: 

Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑) Layer-dependent exciton dynamics in InSe/WS2 heterostructures 2025 Chin. Phys. B 34 097802

[1] Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X and Kang J 2019 Phys. Rev. B 100 195435
[2] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P and Peng B 2020 Nano Lett. 20 2129
[3] Xie W, Zhang L, Yue Y, Li M and Wang H 2024 Phys. Rev. B 109 024406
[4] Ma H, Zhu Y, Liu Y, Bai R, Zhang X, Ren Y and Jiang C 2023 Chin. Phys. B 32 107201
[5] Ye Z, Cao T, O’Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[6] Latini S, Olsen T and Thygesen K S 2015 Phys. Rev. B 92 245123
[7] Lin Y, Ling X, Yu L, Huang S, Hsu A L, Lee Y H, Kong J, Dresselhaus M S and Palacios T 2014 Nano Lett. 14 5569
[8] Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G and Crommie M F 2014 Nat. Mater. 13 1091
[9] Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223
[10] Liu Y, Hu X, Wang T and Liu D 2019 ACS Nano 13 14416
[11] Wang T, Zhang Y, Liu Y, Li J, Liu D, Luo J and Ge K 2018 J. Phys. Chem. C 122 18651
[12] Liu Y, Li H, Qiu C, Hu X and Liu D 2020 Nano Res. 13 661
[13] Palummo M, Bernardi M and Grossman J C 2015 Nano Lett. 15 2794
[14] Huo C F, Yun T, Yan X Q, Liu Z, Zhao X, Xu W, Cui Q, Liu Z B and Tian J G 2023 Chin. Phys. B 32 067203
[15] Li J H, Bing D,Wu Z T,Wu G Q, Bai J, Du R X and Qi Z Q 2020 Chin. Phys. B 29 017802
[16] Mudd GW, Svatek S A, Ren T, Patane A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714
[17] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H and Eda G 2013 ACS Nano 7 791
[18] Weeraddana T M, Premathilaka S M, Tang Y, Antu A D, Roach A, Yang J and Sun L 2022 J. Phys. Chem. Lett. 13 7756
[19] Zhang H, Fu J, Carvalho A, Poh E T, Chung J Y, Feng M, Chen Y, Wang B, Shang Q, Yang H, Zhang Z, Lim S X, Gao W, Gradečak S, Qiu CW, Lu J, He C, Sum T C and Sow C H 2024 ACS Nano 18 16832
[20] Chen J S, Li M, Wu Q, Fron E, Tong X and Cotlet M 2019 ACS Nano 13 8461
[21] Tsai T H, Yang F S, Ho P H, Liang Z Y, Lien C H, Ho C H, Lin Y F and Chiu P W 2019 ACS Appl. Mater. Interfaces 11 35969
[22] Cao T, Hao S, Wu C, Pan C, Dai Y, Cheng B, Liang S J and Miao F 2024 Chin. Phys. B 33 047302
[23] Brotons-Gisbert M, Proux R, Picard R, Andres-Penares D, Branny A, Molina-Sanchez A, Sanchez-Royo J F and Gerardot B D 2019 Nat. Commun. 10 3913
[24] Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, B K M, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800
[25] Liu Y, Zhong Q, Liang D, Jiang Q, Shuai Q, Yang X, Yi X, Sun X, Sun R, Zhong Y, Ge C, Tan Q, Luo Z, Chen S and Pan A 2023 Laser Photonics Rev. 17 2300234
[26] Zhang B, Wu H, Peng K, Shen X, Gong X, Zheng S, Lu X, Wang G and Zhou X 2021 Chin. Phys. B 30 078101
[27] Song C, Huang S, Wang C, Luo J and Yan H 2020 J. Appl. Phys. 128 060901
[28] Hao Q, Yi H, Su H,Wei B,Wang Z, Lao Z, Chai Y,Wang Z, Jin C, Dai J and Zhang W 2019 Nano Lett. 19 2634
[29] Wang Y, Zeng Z, Tian Z, Li C, Braun K, Huang L, Li Y, Luo X, Yi J, Wu G, Liu G, Li D, Zhou Y, Chen M, Wang X and Pan A 2024 Adv. Mater. 36 2410696
[30] Wu J M, Li L H, Zheng W H, Zheng B Y, Xu Z Y, Zhang X H, Zhu C G,Wu K, Zhang C, Jiang Y, Zhu X L and Zhuang X J 2022 Chin. Phys. B 31 057803
[31] Wu T H, Cheng H Y, LaiWC, Sankar R, Chang C S and Lin K H 2023 Nanoscale 15 3169
[32] Ubrig N, Ponomarev E, Zultak J, et al. 2020 Nat. Mater. 19 299
[33] Zheng T, Wu Z T, Nan H Y, Yu Y F, Zafar A, Yan Z Z, Lu J P and Ni Z H 2017 RSC Adv. 7 54964
[34] Pike N A, Pachter R, AltvaterMA, Stevens C E, Klein M, Hendrickson J R, Zhang H, Krylyuk S, Davydov A V and Glavin N R 2024 J. Phys. Chem. C 128 7957
[35] Sun Z Y, Li Y, Xu B, Chen H, Wang P, Zhao S X, Yang L, Gao B, Dou X M, Sun B Q, Zhen L and Xu C Y 2021 Adv. Opt. Mater. 9 2100438
[36] Kylänpää I and Komsa H P 2015 Phys. Rev. B 92 205418
[37] Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M and Yu T 2015 ACS Nano 9 647
[1] Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer
Chenxi Yang(杨晨曦), Lanyu Huang(黄岚雨), Yujie Li(李宇杰), Xiaokun Zhai(翟晓坤), Qiang Ai(艾强), Chunzi Xing(邢淳梓), Xinmiao Yang(杨新苗), Yazhou Gu(谷亚舟), Peigang Li(李培刚), Zhitong Li(李志曈), Haitao Dai(戴海涛), Liefeng Feng(冯列峰), Linsheng Liu(刘林生), Xiao Wang(王笑), and Tingge Gao(高廷阁). Chin. Phys. B, 2025, 34(9): 097803.
[2] Probing high-energy and band-edge exciton dynamics in monolayer WS2 using transient absorption spectroscopy under near-resonant and high-energy excitations
Hang Ren(任航), Shuai Zhu(朱帅), Mingzhao Ouyang(欧阳名钊), Jiake Wang(王加科), Yuegang Fu(付跃刚), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), and Yuanzheng Li(李远征). Chin. Phys. B, 2025, 34(9): 097104.
[3] Room-temperature exciton-polariton condensation in pressed perovskite microcavities
Tianyin Zhu(朱天寅), Zelei Chen(陈泽磊), Xiaoyu Wang(王小宇), Zhongmin Huang(黄钟民), Haibin Zhao(赵海斌), and Jun Wang(王俊). Chin. Phys. B, 2025, 34(9): 094202.
[4] Anisotropic electronic and excitonic properties of monolayer SiP2 from the first-principles GW-BSE calculations
Zichen Wang(王紫辰), Benshu Fan(范本澍), and Peizhe Tang(汤沛哲). Chin. Phys. B, 2025, 34(9): 097801.
[5] Exciton and valley dynamics in WSe2/GaAs heterostructure
Xin Wei(魏鑫), Yuanhe Li(李元和), Wenkai Zhu(朱文凯), Rongkun Han(韩荣坤), Jianhua Zhao(赵建华), Kaiyou Wang(王开友), and Xinhui Zhang(张新惠). Chin. Phys. B, 2025, 34(9): 096701.
[6] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[7] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[8] Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators
Zijian Ma(马子健) and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(9): 097303.
[9] First-principles design of excitonic insulators: A review
Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌). Chin. Phys. B, 2025, 34(9): 097101.
[10] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[11] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[12] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[13] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[14] Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer
Xiao-Xue Li(李晓雪), Hua Peng(彭华), Dong Wang(王栋), and Dong Hou(侯栋). Chin. Phys. B, 2024, 33(3): 037201.
[15] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
No Suggested Reading articles found!