|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer |
| Chenxi Yang(杨晨曦)1, Lanyu Huang(黄岚雨)2, Yujie Li(李宇杰)1, Xiaokun Zhai(翟晓坤)1,†, Qiang Ai(艾强)1, Chunzi Xing(邢淳梓)1, Xinmiao Yang(杨新苗)1, Yazhou Gu(谷亚舟)3, Peigang Li(李培刚)4, Zhitong Li(李志曈)3, Haitao Dai(戴海涛)1, Liefeng Feng(冯列峰)1, Linsheng Liu(刘林生)5, Xiao Wang(王笑)2, and Tingge Gao(高廷阁)1,‡ |
1 Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; 2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 3 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 4 School of Integrated Circuits & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 5 School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, China |
|
|
|
|
Abstract Two-dimensional (2D) transition-metal dichalcogenide (TMD) monolayers based on become a promising platform to study photonics and optoelectronics. Electrically controlling the excitonic properties of TMD monolayers can be realized in different devices. In this work, we realize the strong coupling between the excitons of WS$_2$ monolayers and a photonic cavity mode in a liquid crystal microcavity. The formed exciton polaritons can be electrically tuned by applying voltage to the microcavity. Our work offers a way to study exciton-polariton manipulation based on TMD monolayers by electrical methods at room temperature.
|
Received: 29 April 2025
Revised: 08 June 2025
Accepted manuscript online: 20 June 2025
|
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
| |
78.55.-m
|
(Photoluminescence, properties and materials)
|
| |
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
| |
42.70.Df
|
(Liquid crystals)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174285 and 12474315). H. Dai also acknowledges support from the National Natural Science Foundation of China (Grant No. 62375200). X. Zhai acknowledges support from the National Natural Science Foundation of China (Grant No. 12504372) and the China Postdoctoral Science Foundation–Tianjin Joint Support Program (Grant No. 2025T003TJ). Z. Li acknowledges support from the National Natural Science Foundation of China (Grant No. 12404424). |
Corresponding Authors:
Xiaokun Zhai, Tingge Gao
E-mail: xiaokunzhai@tju.edu.cn;tinggegao@tju.edu.cn
|
Cite this article:
Chenxi Yang(杨晨曦), Lanyu Huang(黄岚雨), Yujie Li(李宇杰), Xiaokun Zhai(翟晓坤), Qiang Ai(艾强), Chunzi Xing(邢淳梓), Xinmiao Yang(杨新苗), Yazhou Gu(谷亚舟), Peigang Li(李培刚), Zhitong Li(李志曈), Haitao Dai(戴海涛), Liefeng Feng(冯列峰), Linsheng Liu(刘林生), Xiao Wang(王笑), and Tingge Gao(高廷阁) Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer 2025 Chin. Phys. B 34 097803
|
[1] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [3] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001 [4] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [6] Ye Z, Cao T, O’Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214 [7] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 [8] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318 [9] Lagerwall J P and Scalia G 2012 Curr. Appl. Phys. 12 1387 [10] Shang J, Zhang X, Zhang V L, Zhang X and Yu T 2023 ACS Photonics 10 2064 [11] Coker K, Zheng C, Arhin J R, Agyekum K O B O and Zhang W 2024 Chin. Phys. B 33 037102 [12] Liu X, Galfsky T, Sun Z, Xia F, Lin E C, Lee Y H, Kéna-Cohen S and Menon V M 2015 Nat. Photonics 9 30 [13] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, Kc S, Dubey M, Cho K, Wallace R M, Lee S C, He J H, Ager J W, Zhang X, Yablonovitch E and Javey A 2015 Science 350 1065 [14] Zhao J, Su R, Fieramosca A, Zhao W, Du W, Liu X, Diederichs C, Sanvitto D, Liew T C H and Xiong Q 2021 Nano Lett. 21 3331 [15] Hao K, Moody G, Wu F, Dass C K, Xu L, Chen C H, Sun L, Li M Y, Li L J, MacDonald A H, Li X and Li J 2016 Nat. Phys. 12 677 [16] Amani M, Taheri P, Addou R, Ahn G H, Kiriya D, Lien D H, Ager J W, Wallace R M and Javey A 2016 Nano Lett. 16 2786 [17] Wang Y, Zhai X, Feng L and Gao T 2022 Appl. Phys. Express 15 022005 [18] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 Adv. Mater. 24 2320 [19] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320 [20] Ling X, Lee Y H, Lin Y, Fang W, Yu L, Dresselhaus M S and Kong J 2014 Nano Lett. 14 464 [21] Lan F, Yang R, Sun K, Wang Z, Zhang Y, Wang Y and Cheng H 2022 Vacuum 201 111091 [22] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754 [23] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [24] Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F and Charlier J C 2013 Sci. Rep. 3 1755 [25] Savona V, Hradil Z, Quattropani A and Schwendimann P 1994 Phys. Rev. B 49 8774 [26] Malpuech G, Kavokin A, Di Carlo A, Baumberg J J, Compagnone F, Lugli P and Zamfirescu M 2002 Phys. Status Solidi A 190 181 [27] Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R and Vamivakas A N 2015 Nat. Nanotechnol. 10 507 [28] Fernandez H A, Withers F, Russo S and Barnes W L 2019 Appl. Phys. Lett. 115 071101 [29] Rechcińska K, Król M, Mazur R, Morawiak P, Mirek R, Łempicka K, Bardyszewski W, Matuszewski M, Kula P, Piecek W, Szczytko J and Pacuski W 2019 Science 366 727 [30] Choi S W, Yamamoto S I, Iwata T and Kikuchi H 2009 J. Phys. D: Appl. Phys. 42 112002 [31] Zhai X, Ma X, Gao Y, Xing C, Gao M, Dai H, Wang X, Pan A, Schumacher S and Gao T 2023 Phys. Rev. Lett. 131 136901 [32] Flatten L C, He Z, Coles D M, Trichet A A P, Powell AW, Taylor R A, Warner J H and Smith J M 2016 Sci. Rep. 6 33134 [33] Gogna R, Zhang L, Wang Z and Deng H 2019 Opt. Express 27 22700 [34] Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine C R, Dollar M, Chakraborty B, Liu X, Ghaemi P and Kéna-Cohen S 2017 Nat. Photonics 11 491 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|