Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 096701    DOI: 10.1088/1674-1056/add504
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices Prev   Next  

Exciton and valley dynamics in WSe2/GaAs heterostructure

Xin Wei(魏鑫)1,2, Yuanhe Li(李元和)1,2, Wenkai Zhu(朱文凯)1,2, Rongkun Han(韩荣坤)1,2, Jianhua Zhao(赵建华)1,3, Kaiyou Wang(王开友)1,2, and Xinhui Zhang(张新惠)1,2,†
1 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
Abstract  Transition metal dichalcogenide (TMDC) monolayers provide an ideal platform for exciton and valley-spintronics exploration due to their unique properties. Integrating TMDC monolayers with conventional semiconductors allows for harnessing the unique properties of both materials. This strategy holds great promise for the development of advanced optoelectronics and spintronic devices. In this work, we investigated exciton and valley dynamics in WSe$_{2}$/GaAs heterostructure by employing the femtosecond pump-probe ultrafast spectroscopy. Facilitated by the charge transfer within the heterostructure, it was found that the exciton of WSe$_{2}$ exhibited much longer lifetime of nanosecond than that of the WSe$_{2}$ monolayer counterpart. Especially, a significantly long valley lifetime up to $\sim 2.7 $ ns was observed for trions of WSe$_{2}$ in the heterostructure even under the off-resonant excitation, which is found to be associated with the resident electrons accumulated at the interface resulting from the charge transfer and resultant interfacial electric field. Our results provide fundamental references for conventional semiconductor-integrated TMDC heterostructures that have great potential for designing novel optoelectronic and spintronic devices.
Keywords:  transition metal dichalcogenide (TMDC) heterostructure      exciton      dynamics      charge transfer      femtosecond time-resolved spectroscopy  
Received:  20 March 2025      Revised:  25 April 2025      Accepted manuscript online:  07 May 2025
PACS:  67.30.hj (Spin dynamics)  
  31.70.Hq (Time-dependent phenomena: excitation and relaxation processes, and reaction rates)  
  72.25.Rb (Spin relaxation and scattering)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: This work was funded by the National Key Research and Development Program of China (Grant No. 2022YFA1405100) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43000000).
Corresponding Authors:  Xinhui Zhang     E-mail:  xinhuiz@semi.ac.cn

Cite this article: 

Xin Wei(魏鑫), Yuanhe Li(李元和), Wenkai Zhu(朱文凯), Rongkun Han(韩荣坤), Jianhua Zhao(赵建华), Kaiyou Wang(王开友), and Xinhui Zhang(张新惠) Exciton and valley dynamics in WSe2/GaAs heterostructure 2025 Chin. Phys. B 34 096701

[1] Sierra J F, Fabian J, Kawakami R K, Roche S and Valenzuela S O 2021 Nat. Nanotechnol. 16 856
[2] Liu Y, Huang Y and Duan X 2019 Nature 567 323
[3] Jiang Y, Chen S, Zheng W, Zheng B and Pan A 2021 Light Sci. Appl. 10 72
[4] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 1
[5] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
[6] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[7] Le D, Barinov A, Preciado E, Isarraraz M, Tanabe I, Komesu T, Troha C, Bartels L, Rahman T S and Dowben P A 2015 J. Phys.: Condens. Matter 27 182201
[8] Volmer F, Pissinger S, Ersfeld M, Kuhlen S, Stampfer C and Beschoten B 2017 Phys. Rev. B 95 235408
[9] Song X, Xie S, Kang K, Park J and Sih V 2016 Nano Lett. 16 5010
[10] Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X and Urbaszek B 2014 Phys. Rev. B 90 075413
[11] Somvanshi D and Jit S 2020 Micro and Nano Technologies Ed. Jit S and Das S (Elsevier) p. 125
[12] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T,Watanabe K, Novoselov K S, Fernández- Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021
[13] Zhong Y, Yue S, Liang J, Yuan L, Xia Y, Tian Y, Zheng Y, Zhang Y, Du W, Li D, Chen S, Pan A and Liu X 2025 Nano Lett. 25 5274
[14] Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M, Zhuang W, Zhang G and Zheng J 2016 Nat. Commun. 7 12512
[15] Hong X, Kim J, Shi S-F, Zhang Y, Jin C, Sun Y, Tongay S,Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682
[16] Liu H, Zhang Z, Zhang C, Li X, Zhang C, Xu F,Wu Y,Wu Z and Kang J 2024 Nano Lett. 24 1851
[17] Hwang A, Park M, Park Y, Shim Y, Youn S, Lee C H, Jeong H B, Jeong H Y, Chang J, Lee K, Yoo G and Heo J 2021 Sci. Adv. 7 eabj2521
[18] Sharma I and Mehta B R 2017 Appl. Phys. Lett. 110 061602
[19] Li K, Wang W, Li J, Jiang W, Feng M and He Y 2020 Photon. Res. 8 1368
[20] Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y and Xu S 2016 Nano Energy 23 89
[21] Jin C, Ma E Y, Karni O, Regan E C, Wang F and Heinz T F 2018 Nat. Nanotechnol. 13 994
[22] Ciarrocchi A, Tagarelli F, Avsar A and Kis A 2022 Nat. Rev. Mater. 7 449
[23] Ajayan J, Nirmal D, Mohankumar P, Kuriyan D, Fletcher A S A, Arivazhagan L and Kumar B S 2019 Microelectron. J. 92 104604
[24] Kikkawa J M and Awschalom D D 1998 Phys. Rev. Lett. 80 4313
[25] Dzhioev R I, Kavokin K V, Korenev V L, Lazarev M V, Meltser B Ya, Stepanova M N, Zakharchenya B P, Gammon D and Katzer D S 2002 Phys. Rev. B 66 245204
[26] Uemura T, Akiho T, Ebina Y and Yamamoto M 2015 Phys. Rev. B 91 140410
[27] Ebina Y, Akiho T, Liu H, YamamotoMand Uemura T 2014 Appl. Phys. Lett. 104 172405
[28] Manna S, Huang H, da Silvaa S F C, Schimpfa C, Rotab M B, Lehnera B, Reindla M, Trottab R and Rastelli A 2020 Appl. Surf. Sci. 532 147360
[29] Rojas-Lopez R R, Hendriks F, van der Wal C H, Guimarães P S S and Guimarães M H D 2024 Appl. Phys. Lett. 125 132104
[30] Pierucci D, Mahmoudi A, Silly M, Bisti F, Oehler F, Patriarche G, Bonell F, Marty A, Vergnaud C, Jamet M, Boukari H, Lhuillier E, Pala M and Ouerghi A 2022 Nanoscale 14 5859
[31] Yan T, Ye J, Qiao X, Tan P and Zhang X 2017 Phys. Chem. Chem. Phys. 19 3176
[32] Li Z, Wang T, Lu Z, Jin C, Chen Y, Meng Y, Lian Z, Taniguchi T, Watanabe K, Zhang S, Smirnov D and Shi S F 2018 Nat. Commun. 9 3719
[33] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, YaoWand Xu X 2013 Nat. Nanotechnol. 8 634
[34] Li J, Goryca M, Yumigeta K, Li H, Tongay S and Crooker S A 2021 Phys. Rev. Mater. 5 044001
[35] Cadiz F, Courtade E, Robert C, Wang G, Shen Y, Cai H, Taniguchi T, Watanabe K, Carrere H, Lagarde D, Manca M, Amand T, Renucci P, Tongay S, Marie X and Urbaszek B 2017 Phys. Rev. X 7 021026
[36] Borghardt S, Tu J S, Winkler F, Schubert J, Zander W, Leosson K and KardynałB E 2017 Phys. Rev. Mater. 1 054001
[37] Raja A, Waldecker L, Zipfel J, Cho Y, Brem S, Ziegler J D, Kulig M, Taniguchi T, Watanabe K, Malic E, Heinz T F, Berkelbach T C and Chernikov A 2019 Nat. Nanotechnol. 14 832
[38] Yan T, Qiao X, Liu X, Tan P and Zhang X 2014 Appl. Phys. Lett. 105 101901
[39] Moody G, Schaibley J and Xu X 2016 J. Opt. Soc. Am. B 33 C39
[40] Cadiz F, Robert C, Courtade E, Manca M, Martinelli L, Taniguchi T, Watanabe K, Amand T, Rowe A C H, Paget D, Urbaszek B and Marie X 2018 Appl. Phys. Lett. 112 152106
[41] Li Y, Shi J, Mi Y, Sui X, Xu H and Liu X 2019 J. Mater. Chem. C 7 4304
[42] Wang Q, Ge S, Li X, Qiu J, Ji Y, Feng J and Sun D 2013 ACS Nano 7 11087
[43] Wang H, Zhang C and Rana F 2015 Nano Lett. 15 339
[44] Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801
[45] Ye J, Niu B, Li Y, Li T and Zhang X 2017 Appl. Phys. Lett. 111 152106
[46] Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L and Marie X 2014 Phys. Rev. B 90 161302
[47] Hu S, Ye J, Liu R and Zhang X 2022 J. Semicond. 43 082001
[48] Yu T and Wu M W 2014 Phys. Rev. B 89 205303
[49] Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B and Liu B L 2015 Phys. Status Solidi B 252 2349
[50] Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J and Chang W H 2015 Nat. Commun. 6 8963
[51] Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J and Crooker S A 2015 Nat. Phys. 11 830
[52] Cheng C, Sun J T, Chen X R, Fu H X and Meng S 2016 Nanoscale 8 17854
[53] Teng L H, Wang X and Lai T S 2011 Acta Phys. Sin. 60 047201 (in Chinese)
[54] Chernikov A, Ruppert C, Hill H M, Rigosi A F and Heinz T F 2015 Nat. Photonics 9 466
[1] Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study
Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开), Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝). Chin. Phys. B, 2025, 34(9): 096201.
[2] Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer
Chenxi Yang(杨晨曦), Lanyu Huang(黄岚雨), Yujie Li(李宇杰), Xiaokun Zhai(翟晓坤), Qiang Ai(艾强), Chunzi Xing(邢淳梓), Xinmiao Yang(杨新苗), Yazhou Gu(谷亚舟), Peigang Li(李培刚), Zhitong Li(李志曈), Haitao Dai(戴海涛), Liefeng Feng(冯列峰), Linsheng Liu(刘林生), Xiao Wang(王笑), and Tingge Gao(高廷阁). Chin. Phys. B, 2025, 34(9): 097803.
[3] Probing high-energy and band-edge exciton dynamics in monolayer WS2 using transient absorption spectroscopy under near-resonant and high-energy excitations
Hang Ren(任航), Shuai Zhu(朱帅), Mingzhao Ouyang(欧阳名钊), Jiake Wang(王加科), Yuegang Fu(付跃刚), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), and Yuanzheng Li(李远征). Chin. Phys. B, 2025, 34(9): 097104.
[4] Room-temperature exciton-polariton condensation in pressed perovskite microcavities
Tianyin Zhu(朱天寅), Zelei Chen(陈泽磊), Xiaoyu Wang(王小宇), Zhongmin Huang(黄钟民), Haibin Zhao(赵海斌), and Jun Wang(王俊). Chin. Phys. B, 2025, 34(9): 094202.
[5] 3D-GTDSE: A GPU-based code for solving 3D-TDSE in Cartesian coordinates
Ke Peng(彭科), Aihua Liu(刘爱华), Jun Wang(王俊), and Xi Zhao(赵曦). Chin. Phys. B, 2025, 34(9): 094203.
[6] Normal energy and stretch diffusion in a one-dimensional momentum conserving lattice with nonlinear bounded kinetic energy
Hongbin Chen(陈宏斌), Qin-Yi Zhang(张钦奕), Jiahui Wang(王佳惠), Nianbei Li(李念北), and Jie Chen(陈杰). Chin. Phys. B, 2025, 34(9): 094401.
[7] Anisotropic electronic and excitonic properties of monolayer SiP2 from the first-principles GW-BSE calculations
Zichen Wang(王紫辰), Benshu Fan(范本澍), and Peizhe Tang(汤沛哲). Chin. Phys. B, 2025, 34(9): 097801.
[8] Layer-dependent exciton dynamics in InSe/WS2 heterostructures
Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑). Chin. Phys. B, 2025, 34(9): 097802.
[9] Cattaneo-Christov heat transfer model for tangent hyperbolic fluid with Thompson-Torian slip and melting effects
Anwar Saeed and Afrah Al-Bossly. Chin. Phys. B, 2025, 34(9): 094404.
[10] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[11] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[12] Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators
Zijian Ma(马子健) and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(9): 097303.
[13] First-principles design of excitonic insulators: A review
Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌). Chin. Phys. B, 2025, 34(9): 097101.
[14] Regulation strategies of hot carrier cooling process in perovskite nanocrystals
Zhenyao Tan(谭振耀), Kexin Xu(徐可欣), Yi Chen(陈逸), Can Ren(任璨), and Tingchao He(贺廷超). Chin. Phys. B, 2025, 34(9): 097302.
[15] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
No Suggested Reading articles found!