|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Exciton and valley dynamics in WSe2/GaAs heterostructure |
| Xin Wei(魏鑫)1,2, Yuanhe Li(李元和)1,2, Wenkai Zhu(朱文凯)1,2, Rongkun Han(韩荣坤)1,2, Jianhua Zhao(赵建华)1,3, Kaiyou Wang(王开友)1,2, and Xinhui Zhang(张新惠)1,2,† |
1 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 National Key Laboratory of Spintronics, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China |
|
|
|
|
Abstract Transition metal dichalcogenide (TMDC) monolayers provide an ideal platform for exciton and valley-spintronics exploration due to their unique properties. Integrating TMDC monolayers with conventional semiconductors allows for harnessing the unique properties of both materials. This strategy holds great promise for the development of advanced optoelectronics and spintronic devices. In this work, we investigated exciton and valley dynamics in WSe$_{2}$/GaAs heterostructure by employing the femtosecond pump-probe ultrafast spectroscopy. Facilitated by the charge transfer within the heterostructure, it was found that the exciton of WSe$_{2}$ exhibited much longer lifetime of nanosecond than that of the WSe$_{2}$ monolayer counterpart. Especially, a significantly long valley lifetime up to $\sim 2.7 $ ns was observed for trions of WSe$_{2}$ in the heterostructure even under the off-resonant excitation, which is found to be associated with the resident electrons accumulated at the interface resulting from the charge transfer and resultant interfacial electric field. Our results provide fundamental references for conventional semiconductor-integrated TMDC heterostructures that have great potential for designing novel optoelectronic and spintronic devices.
|
Received: 20 March 2025
Revised: 25 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
67.30.hj
|
(Spin dynamics)
|
| |
31.70.Hq
|
(Time-dependent phenomena: excitation and relaxation processes, and reaction rates)
|
| |
72.25.Rb
|
(Spin relaxation and scattering)
|
| |
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
| Fund: This work was funded by the National Key Research and Development Program of China (Grant No. 2022YFA1405100) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB43000000). |
Corresponding Authors:
Xinhui Zhang
E-mail: xinhuiz@semi.ac.cn
|
Cite this article:
Xin Wei(魏鑫), Yuanhe Li(李元和), Wenkai Zhu(朱文凯), Rongkun Han(韩荣坤), Jianhua Zhao(赵建华), Kaiyou Wang(王开友), and Xinhui Zhang(张新惠) Exciton and valley dynamics in WSe2/GaAs heterostructure 2025 Chin. Phys. B 34 096701
|
[1] Sierra J F, Fabian J, Kawakami R K, Roche S and Valenzuela S O 2021 Nat. Nanotechnol. 16 856 [2] Liu Y, Huang Y and Duan X 2019 Nature 567 323 [3] Jiang Y, Chen S, Zheng W, Zheng B and Pan A 2021 Light Sci. Appl. 10 72 [4] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 1 [5] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001 [6] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [7] Le D, Barinov A, Preciado E, Isarraraz M, Tanabe I, Komesu T, Troha C, Bartels L, Rahman T S and Dowben P A 2015 J. Phys.: Condens. Matter 27 182201 [8] Volmer F, Pissinger S, Ersfeld M, Kuhlen S, Stampfer C and Beschoten B 2017 Phys. Rev. B 95 235408 [9] Song X, Xie S, Kang K, Park J and Sih V 2016 Nano Lett. 16 5010 [10] Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X and Urbaszek B 2014 Phys. Rev. B 90 075413 [11] Somvanshi D and Jit S 2020 Micro and Nano Technologies Ed. Jit S and Das S (Elsevier) p. 125 [12] Lyons T P, Gillard D, Molina-Sánchez A, Misra A, Withers F, Keatley P S, Kozikov A, Taniguchi T,Watanabe K, Novoselov K S, Fernández- Rossier J and Tartakovskii A I 2020 Nat. Commun. 11 6021 [13] Zhong Y, Yue S, Liang J, Yuan L, Xia Y, Tian Y, Zheng Y, Zhang Y, Du W, Li D, Chen S, Pan A and Liu X 2025 Nano Lett. 25 5274 [14] Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M, Zhuang W, Zhang G and Zheng J 2016 Nat. Commun. 7 12512 [15] Hong X, Kim J, Shi S-F, Zhang Y, Jin C, Sun Y, Tongay S,Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682 [16] Liu H, Zhang Z, Zhang C, Li X, Zhang C, Xu F,Wu Y,Wu Z and Kang J 2024 Nano Lett. 24 1851 [17] Hwang A, Park M, Park Y, Shim Y, Youn S, Lee C H, Jeong H B, Jeong H Y, Chang J, Lee K, Yoo G and Heo J 2021 Sci. Adv. 7 eabj2521 [18] Sharma I and Mehta B R 2017 Appl. Phys. Lett. 110 061602 [19] Li K, Wang W, Li J, Jiang W, Feng M and He Y 2020 Photon. Res. 8 1368 [20] Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y and Xu S 2016 Nano Energy 23 89 [21] Jin C, Ma E Y, Karni O, Regan E C, Wang F and Heinz T F 2018 Nat. Nanotechnol. 13 994 [22] Ciarrocchi A, Tagarelli F, Avsar A and Kis A 2022 Nat. Rev. Mater. 7 449 [23] Ajayan J, Nirmal D, Mohankumar P, Kuriyan D, Fletcher A S A, Arivazhagan L and Kumar B S 2019 Microelectron. J. 92 104604 [24] Kikkawa J M and Awschalom D D 1998 Phys. Rev. Lett. 80 4313 [25] Dzhioev R I, Kavokin K V, Korenev V L, Lazarev M V, Meltser B Ya, Stepanova M N, Zakharchenya B P, Gammon D and Katzer D S 2002 Phys. Rev. B 66 245204 [26] Uemura T, Akiho T, Ebina Y and Yamamoto M 2015 Phys. Rev. B 91 140410 [27] Ebina Y, Akiho T, Liu H, YamamotoMand Uemura T 2014 Appl. Phys. Lett. 104 172405 [28] Manna S, Huang H, da Silvaa S F C, Schimpfa C, Rotab M B, Lehnera B, Reindla M, Trottab R and Rastelli A 2020 Appl. Surf. Sci. 532 147360 [29] Rojas-Lopez R R, Hendriks F, van der Wal C H, Guimarães P S S and Guimarães M H D 2024 Appl. Phys. Lett. 125 132104 [30] Pierucci D, Mahmoudi A, Silly M, Bisti F, Oehler F, Patriarche G, Bonell F, Marty A, Vergnaud C, Jamet M, Boukari H, Lhuillier E, Pala M and Ouerghi A 2022 Nanoscale 14 5859 [31] Yan T, Ye J, Qiao X, Tan P and Zhang X 2017 Phys. Chem. Chem. Phys. 19 3176 [32] Li Z, Wang T, Lu Z, Jin C, Chen Y, Meng Y, Lian Z, Taniguchi T, Watanabe K, Zhang S, Smirnov D and Shi S F 2018 Nat. Commun. 9 3719 [33] Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, YaoWand Xu X 2013 Nat. Nanotechnol. 8 634 [34] Li J, Goryca M, Yumigeta K, Li H, Tongay S and Crooker S A 2021 Phys. Rev. Mater. 5 044001 [35] Cadiz F, Courtade E, Robert C, Wang G, Shen Y, Cai H, Taniguchi T, Watanabe K, Carrere H, Lagarde D, Manca M, Amand T, Renucci P, Tongay S, Marie X and Urbaszek B 2017 Phys. Rev. X 7 021026 [36] Borghardt S, Tu J S, Winkler F, Schubert J, Zander W, Leosson K and KardynałB E 2017 Phys. Rev. Mater. 1 054001 [37] Raja A, Waldecker L, Zipfel J, Cho Y, Brem S, Ziegler J D, Kulig M, Taniguchi T, Watanabe K, Malic E, Heinz T F, Berkelbach T C and Chernikov A 2019 Nat. Nanotechnol. 14 832 [38] Yan T, Qiao X, Liu X, Tan P and Zhang X 2014 Appl. Phys. Lett. 105 101901 [39] Moody G, Schaibley J and Xu X 2016 J. Opt. Soc. Am. B 33 C39 [40] Cadiz F, Robert C, Courtade E, Manca M, Martinelli L, Taniguchi T, Watanabe K, Amand T, Rowe A C H, Paget D, Urbaszek B and Marie X 2018 Appl. Phys. Lett. 112 152106 [41] Li Y, Shi J, Mi Y, Sui X, Xu H and Liu X 2019 J. Mater. Chem. C 7 4304 [42] Wang Q, Ge S, Li X, Qiu J, Ji Y, Feng J and Sun D 2013 ACS Nano 7 11087 [43] Wang H, Zhang C and Rana F 2015 Nano Lett. 15 339 [44] Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801 [45] Ye J, Niu B, Li Y, Li T and Zhang X 2017 Appl. Phys. Lett. 111 152106 [46] Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L and Marie X 2014 Phys. Rev. B 90 161302 [47] Hu S, Ye J, Liu R and Zhang X 2022 J. Semicond. 43 082001 [48] Yu T and Wu M W 2014 Phys. Rev. B 89 205303 [49] Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B and Liu B L 2015 Phys. Status Solidi B 252 2349 [50] Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J and Chang W H 2015 Nat. Commun. 6 8963 [51] Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J and Crooker S A 2015 Nat. Phys. 11 830 [52] Cheng C, Sun J T, Chen X R, Fu H X and Meng S 2016 Nanoscale 8 17854 [53] Teng L H, Wang X and Lai T S 2011 Acta Phys. Sin. 60 047201 (in Chinese) [54] Chernikov A, Ruppert C, Hill H M, Rigosi A F and Heinz T F 2015 Nat. Photonics 9 466 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|