Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097801    DOI: 10.1088/1674-1056/ade66a
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices Prev   Next  

Anisotropic electronic and excitonic properties of monolayer SiP2 from the first-principles GW-BSE calculations

Zichen Wang(王紫辰)1, Benshu Fan(范本澍)2,†, and Peizhe Tang(汤沛哲)1,2,‡
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
2 Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
Abstract  We investigate electronic structures and excitonic properties of monolayer SiP$_2$ within the framework of first-principles GW plus Bethe-Salpeter equation (GW-BSE) calculations. Within the G$_0$W$_0$ approximation, monolayer SiP$_2$ is identified as a direct-gap semiconductor with an electronic gap of 3.14 eV, and the excitons exhibit a hybrid-dimensional character similar to that of the bulk counterpart. The optical absorption spectra reveal pronounced excitonic effects with strong anisotropy: the first bright exciton has a binding energy of 840 meV under x-polarized light, compared with 450 meV under y-polarized light. We further analyze the symmetry origins of the polarization-dependent optical selection rules through group theory. This binding energy difference arises from the intrinsic nature of the excitons: flat-band excitons under x-polarized light and conventional excitons localized at a single $\bm{k}$ point under y-polarized light. Our work enhances the understanding of excitonic behavior in monolayer SiP$_2$ and highlights its potential for polarization-sensitive and directionally tunable optoelectronic applications.
Keywords:  hybrid dimensionality      exciton      GW-BSE  
Received:  13 May 2025      Revised:  20 June 2025      Accepted manuscript online:  20 June 2025
PACS:  78.66.-w (Optical properties of specific thin films)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12234011 and 12374053) and the National Key Research and Development Program of China (Grant No. 2024YFA1409100).
Corresponding Authors:  Benshu Fan, Peizhe Tang     E-mail:  benshu.fan@mpsd.mpg.de;peizhet@buaa.edu.cn

Cite this article: 

Zichen Wang(王紫辰), Benshu Fan(范本澍), and Peizhe Tang(汤沛哲) Anisotropic electronic and excitonic properties of monolayer SiP2 from the first-principles GW-BSE calculations 2025 Chin. Phys. B 34 097801

[1] Wilson N P, Yao W, Shan J and Xu X 2022 Nature 599 383
[2] Fu Q, Hu Z, Zhou M, Lu J and Ni Z 2021 Laser Photonics Rev. 15 2000587
[3] Wang S, Wang J, Zhao W, Giustiniano F, Chu L, Verzhbitskiy I, Yong J Z and Eda G 2017 Nano Lett. 17 5156
[4] Bai Y, Wang Y and Meng S 2024 Phys. Rev. Lett. 133 046903
[5] Dai Z, Lian C, Lafuente-Bartolome J and Giustino F 2024 Phys. Rev. Lett. 132 036902
[6] Yao J, Sheng H, Zhang R, Pang R, Zhou J J, Wu Q, Weng H, Dai X, Fang Z and Wang Z 2024 Chin. Phys. Lett. 41 097101
[7] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[8] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406
[9] Lian C, Zhang S J, Hu S Q, GuanMX and Meng S 2020 Nat. Commun. 11 43
[10] Yuan L and Huang L 2015 Nanoscale 7 7402
[11] Mueller T and Malic E 2018 npj 2D Mater. Appl. 2 29
[12] Chan Y, Haber J B, Naik M H, Neaton J B, Qiu D Y, da Jornada F H and Louie S G 2023 Nano Lett. 23 3971
[13] Lin Y, Chan Y, Lee W, Lu L S, Li Z, Chang W H, Shin C K, Kaindl R A and Louie S G 2022 Phys. Rev. B 106 L081117
[14] Sui X, Wang H, Liang C, Zhang Q, Bo H, Wu K, Zhu Z, Gong Y, Yue S, Chen H, Shang Q, Mi Y, Gao P, Zhang Y, Meng S and Liu X 2022 Nano Lett. 22 5651
[15] Liu X B, Hu S Q, Chen D, Guan M, Chen Q and Meng S 2022 Nano Lett. 22 4800
[16] Qiu D Y, Da Jornada F H and Louie S G 2013 Phys. Rev. Lett. 111 216805
[17] Qiu D Y, Da Jornada F H and Louie S G 2016 Phys. Rev. B 93 235435
[18] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802
[19] Dong S, Chen Y, Qu H, Lou W and Chang K 2025 Phys. Rev. Lett. 134 066602
[20] Garcia C, Radha S K, Acharya S and Lambrecht W R L 2024 Phys. Rev. B 110 085102
[21] Gorelov V, Reining L, Feneberg M, Goldhahn R, Schleife A, Lambrecht W R L and Gatti M 2022 npj Comput. Mater. 8 94
[22] Dai X, Qin F, Qiu C, Zhou L, Huang J, Cheng F, Bi X, Zhang C, Li Z, Tang M, Wu S, Zhao X, Lu Y, Gou H and Yuan H 2023 Nano Res. 16 1107
[23] Li Z, Huang J, Zhou L, Xu Z, Qin F, Chen P, Sun X, Liu G, Sui C, Qiu C, Lu Y, Gou H, Xi X, Ideue T, Tang P, Iwasa Y and Yuan H 2023 Nat. Commun. 14 5568
[24] Cheng F, Huang J, Qin F, Zhou L, Dai X, Bi X, Zhang C, Li Z, Tang M, Qiu C, Lu Y, Gou H and Yuan H 2022 Nano Res. 15 7378
[25] Zhou L, Huang J, Windgaetter L, Ong C S, Zhao X, Zhang C, Tang M, Li Z, Qiu C, Latini S, Lu F, Wu D, Gou H, Wee A T S, Hosono H, Louie S G, Tang P, Rubio A and Yuan H 2022 Nat. Mater. 21 773
[26] Matta S K, Zhang C, Jiao Y, O’Mullane A and Du A 2018 Nanoscale 10 6369
[27] Zhou J, Cai T Y and Ju S 2020 Phys. Rev. Res. 2 033288
[28] Zhou R, Sui L, Liu X, Liu K, Guo D, Zhao W, Song S, Lv C, Chen S, Jiang T, Cheng Z, Meng S and Shan C 2023 Nat. Commun. 14 1310
[29] Caruso F, Filip M R and Giustino F 2015 Phys. Rev. B 92 125134
[30] Huang T A, Zacharias M, Lewis D K, Giustino F and Sharifzadeh S 2021 J. Phys. Chem. Lett. 12 3802
[31] Xia F,Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photonics 8 899
[32] Yang L, Deslippe J, Park C H, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 186802
[33] Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S and Castro Neto A H 2016 Phys. Rev. B 94 155428
[34] Ying X and Law K T 2024 arXiv:2407.00325 [cond-mat.mes-hall]
[35] Rozzi C A, Varsano D, Marini A, Gross E K U and Rubio A 2006 Phys. Rev. B 73 205119
[36] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36
[39] Iraola M, Mañes J L, Bradlyn B, Horton M K, Neupert T, Vergniory M G and Tsirkin S S 2022 Comput. Phys. Commun. 272 108226
[40] Sangalli D, Ferretti A, Miranda H, et al. 2019 J. Phys.: Condens. Matter 31 325902
[41] Marini A, Hogan C, Grüning M and Varsano D 2009 Comp. Phys. Comm. 104 180
[42] Wolf D, Keblinski P, Phillpot S R and Eggebrecht J 1999 J. Chem. Phys. 110 8254
[43] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927
[44] Chen Y, LouWK, YangWand Chang K 2025 New J. Phys. 27 023026
[1] Layer-dependent exciton dynamics in InSe/WS2 heterostructures
Siyao Li(李思垚), Yufan Wang(王雨凡), Zhiqiang Ming(明志强), Yong Liu(刘勇), Lanyu Huang(黄岚雨), Siman Liu(刘思嫚), Jialong Li(李佳龙), Yulin Chen(成昱霖), Zhoujuan Xu(徐周娟), Zeyu Liu(刘泽宇), Danliang Zhang(张丹亮), and Xiao Wang(王笑). Chin. Phys. B, 2025, 34(9): 097802.
[2] Exciton and valley dynamics in WSe2/GaAs heterostructure
Xin Wei(魏鑫), Yuanhe Li(李元和), Wenkai Zhu(朱文凯), Rongkun Han(韩荣坤), Jianhua Zhao(赵建华), Kaiyou Wang(王开友), and Xinhui Zhang(张新惠). Chin. Phys. B, 2025, 34(9): 096701.
[3] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[4] Exciton insulators in two-dimensional systems
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征). Chin. Phys. B, 2025, 34(9): 097301.
[5] Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators
Zijian Ma(马子健) and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(9): 097303.
[6] First-principles design of excitonic insulators: A review
Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌). Chin. Phys. B, 2025, 34(9): 097101.
[7] Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer
Chenxi Yang(杨晨曦), Lanyu Huang(黄岚雨), Yujie Li(李宇杰), Xiaokun Zhai(翟晓坤), Qiang Ai(艾强), Chunzi Xing(邢淳梓), Xinmiao Yang(杨新苗), Yazhou Gu(谷亚舟), Peigang Li(李培刚), Zhitong Li(李志曈), Haitao Dai(戴海涛), Liefeng Feng(冯列峰), Linsheng Liu(刘林生), Xiao Wang(王笑), and Tingge Gao(高廷阁). Chin. Phys. B, 2025, 34(9): 097803.
[8] Probing high-energy and band-edge exciton dynamics in monolayer WS2 using transient absorption spectroscopy under near-resonant and high-energy excitations
Hang Ren(任航), Shuai Zhu(朱帅), Mingzhao Ouyang(欧阳名钊), Jiake Wang(王加科), Yuegang Fu(付跃刚), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), and Yuanzheng Li(李远征). Chin. Phys. B, 2025, 34(9): 097104.
[9] Room-temperature exciton-polariton condensation in pressed perovskite microcavities
Tianyin Zhu(朱天寅), Zelei Chen(陈泽磊), Xiaoyu Wang(王小宇), Zhongmin Huang(黄钟民), Haibin Zhao(赵海斌), and Jun Wang(王俊). Chin. Phys. B, 2025, 34(9): 094202.
[10] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[11] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[12] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[13] Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer
Xiao-Xue Li(李晓雪), Hua Peng(彭华), Dong Wang(王栋), and Dong Hou(侯栋). Chin. Phys. B, 2024, 33(3): 037201.
[14] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
[15] Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides
Jiahao Xie(颉家豪), Zewei Li(李泽唯), Shengqiao Wang(王晟侨), and Lijun Zhang(张立军). Chin. Phys. B, 2024, 33(11): 117102.
No Suggested Reading articles found!