|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Unique high-energy excitons in two-dimensional transition metal dichalcogenides |
| Yongsheng Gao(高永盛), Yuanzheng Li(李远征)†, Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳)‡, and Yichun Liu(刘益春)§ |
| State Key Laboratory of Integrated Optoelectronics, and Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China |
|
|
|
|
Abstract Two-dimensional (2D) transition metal dichalcogenides (TMDs), endowed with exceptional light-matter interaction strength, have become a pivotal platform in advanced optoelectronics, enabling atomically precise control of excitonic phenomena and offering transformative potential for engineering next-generation optoelectronic devices. In contrast to the narrowband absorption characteristics of conventional band-edge excitons, which are limited by the bandgap energy, high-energy excitons not only demonstrate broad momentum matching capability in the ultraviolet regime due to band nesting effects, but also exhibit distinct absorption peak signatures owing to robust excitonic stabilization under 2D confinement. These unique photophysical properties have established such systems as a prominent research frontier in contemporary exciton physics. This review primarily outlines the distinctive physical characteristics of high-energy excitons in TMDs from the perspectives of band structure, excitonic characteristics, and optical properties. Subsequently, we systematically delineate cutting-edge developments in TMD-based photonic devices exploiting high-energy excitonic band-nesting phenomena, with dedicated emphasis on the strategic engineering of nanoscale heterostructures for tailored optoelectronic functionality. Finally, the discussion concludes with an examination of the challenges associated with the design of high-energy exciton devices and their potential future applications.
|
Received: 26 April 2025
Revised: 01 June 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
71.35.-y
|
(Excitons and related phenomena)
|
| |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
| |
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
| |
71.35.Pq
|
(Charged excitons (trions))
|
|
| Fund: Project supported by the National Natural Science Foundation Fund for Distinguished Young Scholars (Grant No. 52025022), the National Natural Science Foundation of China (Grant Nos. 62574038, 12474421, 62275045, and 12074060), the National Key R&D Program of China (Grant No. 2023YFB3610200), and the Fund from Jilin Province (Grant Nos. JJKH20241413KJ and 20240601049RC). |
Corresponding Authors:
Yuanzheng Li, Haiyang Xu, Yichun Liu
E-mail: liyz264@nenu.edu.cn;hyxu@nenu.edu.cn;ycliu@nenu.edu.cn
|
Cite this article:
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春) Unique high-energy excitons in two-dimensional transition metal dichalcogenides 2025 Chin. Phys. B 34 097102
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Britnell L, Gorbachev R, Jalil R, Belle B, Schedin F, Mishchenko A, Georgiou T, Katsnelson M, Eaves L and Morozov S 2012 Science 335 947 [3] Zhong Y, Yue S, Liang J, Yuan L, Xia Y, Tian Y, Zheng Y, Zhang Y, Du W, Li D, Chen S, Pan A and Liu X 2025 Nano Lett. 25 5274 [4] Coker K, Zheng C, Arhin J R, Agyekum K O B O and Zhang W 2024 Chin. Phys. B 33 037102 [5] You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R and Heinz T F 2015 Nat. Phys. 11 477 [6] Bertolazzi S, Krasnozhon D and Kis A 2013 ACS Nano 7 3246 [7] Chen P Y, Quan Z and Wang S D 2024 Chin. Phys. B 33 107105 [8] Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R and Chen Y 2014 Nat. Nanotechnol. 9 111 [9] Bao X, Shi J, Han X, Wu K, Zeng X, Xia Y, Zhao J, Zhang Z, Du W, Yue S Wu X, Wu B, Huang Y, Zhang W and Liu X 2025 Nano Lett. 25 2639 [10] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001 [11] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401 [12] Kim J, Hong X, Jin C, Shi S F, Chang C Y S, Chiu M H, Li L J and Wang F 2014 Science 346 1205 [13] Wu Y C, Taniguchi T,Watanabe K and Yan J 2023 ACS Nano 17 15641 [14] Barré E, Karni O, Liu E, O’Beirne A L, Chen X, Ribeiro H B, Yu L, Kim B, Watanabe K and Taniguchi T 2022 Science 376 406 [15] Brotons-Gisbert M, Baek H, Molina-Sánchez A, Campbell A, Scerri E, White D, Watanabe K, Taniguchi T, Bonato C and Gerardot B D 2020 Nat. Mater. 19 630 [16] Shi Q, Shih E M, Rhodes D, Kim B, Barmak K,Watanabe K, Taniguchi T, Papić Z, Abanin D A and Hone J 2022 Nat. Nanotechnol. 17 577 [17] Tan Q, Rasmita A, Li S, Liu S, Huang Z, Xiong Q, Yang S A, Novoselov K and Gao W B 2021 Sci. Adv. 7 eabh0863 [18] Hao K, Specht J F, Nagler P, Xu L, Tran K, Singh A, Dass C K, Schüller C, Korn T and Richter M 2017 Nat. Commun. 8 15552 [19] Lindlau J, Selig M, Neumann A, Colombier L, Förste J, Funk V, Förg M, Kim J and Berghäuser G 2018 Nat. Commun. 9 2586 [20] Schmitt D, Bange J P, Bennecke W, Meneghini G, AlMutairi A, Merboldt M, Pöhls J, Watanabe K, Taniguchi T and Steil S 2025 Nat. Photonics 19 187 [21] Li D, Trovatello C, Dal Conte S, Nuß M, Soavi G, Wang G, Ferrari A C, Cerullo G and Brixner T 2021 Nat. Commun. 12 954 [22] Miller B, Lindlau J, Bommert M, Neumann A, Yamaguchi H, Holleitner A, Högele A and Wurstbauer U 2019 Nat. Commun. 10 807 [23] Lundt N, Klembt S, Cherotchenko E, Betzold S, Iff O, Nalitov A V, Klaas M, Dietrich C P, Kavokin A V and Höfling S 2016 Nat. Commun. 7 13328 [24] Sun J, Hu H, Zheng D, Zhang D, Deng Q, Zhang S and Xu H 2018 ACS Nano 12 10393 [25] Wolff C and Mortensen N A 2020 Nat. Commun. 11 4039 [26] Zhou Y, Scuri G, Wild D S, High A A, Dibos A, Jauregui L A, Shu C, De Greve K, Pistunova K and Joe A Y 2017 Nat. Nanotechnol. 12 856 [27] Gillen R and Maultzsch J 2016 IEEE J. Sel. Top. Quantum Electron. 23 219 [28] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [29] Carvalho A, Ribeiro R and Castro Neto A 2013 Phys. Rev. B 88 115205 [30] Jones A J, Muzzio R, Majchrzak P, Pakdel S, Curcio D, Volckaert K, Biswas D, Gobbo J, Singh S and Robinson 2020 Adv. Mater. 32 2001656 [31] Dong K, Zhou H, Gao Z, Xu M, Zhang L, Zhou S, Cui H,Wang S, Tao C and Ke W 2024 Adv. Funct. Mater. 34 2306941 [32] Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X and Huang F 2020 Nano Energy 72 104718 [33] Lan W, Wang Y, Singh J and Zhu F 2018 ACS Photonics 5 1144 [34] Lu Y, Chen T, Mkhize N, Chang R J, Sheng Y, Holdway P, Bhaskaran H and Warner J H 2021 ACS Nano 15 19570 [35] Tan Y, Qiao Q, Zhao T, Chang S, Zhang Z, Zang J, Lin C, Shang Y, Yang X and Zhou J 2024 J. Mater. Sci. Technol. 190 200 [36] Tsai H, NieW, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J and Tretiak S 2016 Nature 536 312 [37] Zhou X, Lu Z, Zhang L and Ke Q 2023 Nano Energy 117 108908 [38] Rarick H, Kala A, Pumulo S, Manna A, Sharp D, Munley C, Xu X and Majumdar A 2024 ACS Photonics 11 4635 [39] Sinelnik A, Lam S H, Coviello F, Klimmer S, Della Valle G, Choi D Y, Pertsch T, Soavi G and Staude I 2024 Nat. Commun. 15 2507 [40] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [41] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [42] Koitzsch A, Pawlik A-S, Habenicht C, Klaproth T, Schuster R, Büchner B and Knupfer M 2019 npj 2D Mater. Appl. 3 41 [43] Aleithan S H, Livshits M Y, Khadka S, Rack J J, Kordesch M E and Stinaff E 2016 Phys. Rev. B 94 035445 [44] Klots A, Newaz A, Wang B, Prasai D, Krzyzanowska H, Lin J, Caudel D, Ghimire N, Yan J and Ivanov B 2014 Sci. Rep. 4 6608 [45] Low T and Avouris P 2014 ACS Nano 8 1086 [46] Stauber T, Peres N M and Geim A K 2008 Phys. Rev. B 78 085432 [47] Rose A H, Aubry T J, Zhang H and van de Lagemaat J 2022 Adv. Opt. Mater. 10 2200485 [48] Cha S, Ouyang T, Taniguchi T, Watanabe K, Gabor N M and Lui C H 2024 Nano Lett. 24 14847 [49] Huang W, Xiao Y, Xia F, Chen X and Zhai T 2024 Adv. Funct. Mater. 34 2310726 [50] Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A and Urbaszek B 2015 Phys. Rev. Lett. 114 097403 [51] Le C T, Clark D J, Ullah F, Jang J I, Senthilkumar V, Sim Y, Seong M J, Chung K H, Kim J W and Park S 2017 ACS Photonics 4 38 [52] Shi J, Liang W Y, Raja S S, Sang Y, Zhang X Q, Chen C A, Wang Y, Yang X, Lee Y H and Ahn H 2018 Laser Photonics Rev. 12 1800188 [53] Guo W P, Liang W Y, Cheng C W, Wu W L, Wang Y T, Sun Q, Zu S, Misawa H, Cheng P J and Chang S W 2020 Nano Lett. 20 2857 [54] Xu C, Mao Y, Li K, Wang Z, Liu X, Dong N, Li S Y, Pan A and Wang J 2024 Adv. Opt. Mater. 12 2302407 [55] Manca M, Glazov M M, Robert C, Cadiz F, Taniguchi T, Watanabe K, Courtade E, Amand T, Renucci P and Marie X 2017 Nat. Commun. 8 14927 [56] Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Á guila A G, Christianen P C, Bratschitsch R, Schüller C and Korn T 2016 Nat. Commun. 7 12715 [57] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072 [58] Camellini A, Mennucci C, Cinquanta E, Martella C, Mazzanti A, Lamperti A, Molle A, De Mongeot F B, Della Valle G and Zavelani-Rossi M 2018 ACS Photonics 5 3363 [59] Kozawa D, Kumar R, Carvalho A, Kumar Amara K, Zhao W, Wang S, Toh M, Ribeiro R M, Castro Neto A H and Matsuda K 2014 Nat. Commun. 5 4543 [60] Li Y,Wu X, LiuW, Xu H and Liu X 2021 Appl. Phys. Lett. 119 051106 [61] Borzda T, Gadermaier C, Vujicic N, Topolovsek P, Borovsak M, Mertelj T, Viola D, Manzoni C, Pogna E A and Brida D 2015 Adv. Funct. Mater. 25 3351 [62] Goswami T, Bhatt H, Babu K J, Kaur G, Ghorai N and Ghosh H N 2021 J. Phys. Chem. Lett. 12 6526 [63] Li M, Fu J, Xu Q and Sum T C 2019 Adv. Mater. 31 1802486 [64] St-Gelais R, Bhatt G R, Zhu L, Fan S and Lipson M 2017 ACS Nano 11 3001 [65] Urcuyo R, Duong D L, Sailer P, Burghard M and Kern K 2016 Nano Lett. 16 6761 [66] Wang L, Wang Z, Wang H-Y, Grinblat G, Huang Y L, Wang D, Ye X H, Li X B, Bao Q and Wee A S 2017 Nat. Commun. 8 13906 [67] Li Y, Shi J, Chen H, Mi Y, Du W, Sui X, Jiang C, Liu W, Xu H and Liu X 2019 Laser Photonics Rev. 13 1800270 [68] Rose A H, Aubry T J, Zhang H, Vigil-Fowler D and van de Lagemaat J 2022 J. Phys. Chem. C 126 8710 [69] Wei X, Wang Z, Wang Z, Lu Y, Ji Q and Liu W 2024 Nano Lett. 24 9269 [70] Tran T X, Jang Y J, Vu V T, Jung C W, Do V D, Jin Y, Lee J, Kim H and Kim J H 2024 Nano Lett. 24 11163 [71] Fan K, Wang H, Ma Z, Liao W A, Zhang W H, Liu C F, Meng S, Tian G and Fu Y S 2024 J. Am. Chem. Soc. 146 33561 [72] Li Z, Zeng Y, Ou Z, Zhang T, Du R, Wu K, Guo Q, Jiang W, Xu Y and Li T 2022 Nano Res. 15 1616 [73] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L and Lu H 2020 Nano Lett. 20 2129 [74] Zhang T and Wang J 2021 ACS Photonics 8 2770 [75] Liu H, Wang C, Zuo Z, Liu D and Luo J 2020 Adv. Mater. 32 1906540 [76] Qu J, Wei Y, Zhao L, Tan R, Li W, Shi H, Zhang Y, Yang J, Gao B and Li X 2024 ACS Nano 18 34322 [77] Arora A, Drüppel M, Schmidt R, Deilmann T, Schneider R, Molas M R, Marauhn P, Michaelis de Vasconcellos S, Potemski M and Rohlfing M 2017 Nat. Commun. 8 639 [78] Kumar D, Kumar V, Kumar R, Kumar M and Kumar P 2022 Phys. Rev. B 105 085419 [79] Yang L, Peng Y, Yang Y, Liu J, Huang H, Yu B, Zhao J, Lu Y, Huang Z and Li Z 2019 Adv. Sci. 6 1900310 [80] Lee J U, Kim K, Han S, Ryu G H, Lee Z and Cheong H 2016 ACS Nano 10 1948 [81] Kim K, Lee J U, Nam D and Cheong H 2016 ACS Nano 10 8113 [82] McCreary K M, Phillips M, Chuang H J, Wickramaratne D, Rosenberger M, Hellberg C S and Jonker B T 2022 Nanoscale 14 147 [83] Wang Y, Carvalho B R and Crespi V H 2018 Phys. Rev. B 98 161405 [84] Tan Q H, Sun Y J, Liu X L, Zhao Y, Xiong Q, Tan P H and Zhang J 2017 2D Mater. 4 031007 [85] Bilgin I, Raeliarijaona A S, Lucking M C, Hodge S C, Mohite A D, de Luna Bugallo A, Terrones H and Kar S 2018 ACS Nano 12 740 [86] Cortijo-Campos S, Kung P, Prieto C and de Andres A 2021 J. Phys. Chem. C 125 23904 [87] Trovatello C, Miranda H P, Molina-Sanchez A, Borrego-Varillas R, Manzoni C, Moretti L, Ganzer L, Maiuri M, Wang J and Dumcenco D 2020 ACS Nano 14 5700 [88] Schneider E, Watanabe K, Taniguchi T and Maultzsch J 2024 Phys. Rev. B 110 125431 [89] Yan Z, Poh E T, Zhang Z, Chua S T, Wang X, Wu X, Chen Z, Yang J, Xu Q H and Goh K E J 2020 ACS Nano 14 5946 [90] Feng J, Li Y, Li J, Feng Q, Xin W, Liu W, Xu H and Liu Y 2022 Nano Lett. 22 3699 [91] Li Y, Pan J, Yan C, Li J, Xin W, Zhang Y, Liu W, Liu X, Xu H and Liu Y 2024 Nano Lett. 24 7252 [92] Liu W, Yang X, Wang Z, Li Y, Li J, Feng Q, Xie X, Xin W, Xu H and Liu Y 2023 Light-Sci. Appl. 12 180 [93] Long Z, Zhou Y, Ding Y, Qiu X, Poddar S and Fan Z 2025 Nat. Rev. Mater. 10 128 [94] Li J, Zhou Y, Li Y, Yan C, Zhao X G, Xin W, Xie X, Liu W, Xu H and Liu Y 2024 ACS Photonics 11 4578 [95] Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y and Li X 2018 J. Mater. Chem. C 6 10982 [96] Zeng L H, Lin S H, Li Z J, Zhang Z X, Zhang T F, Xie C, Mak C H, Chai Y, Lau S P and Luo L B 2018 Adv. Funct. Mater. 28 1705970 [97] Zhao Z, Wu D, Guo J, Wu E, Jia C, Shi Z, Tian Y, Li X and Tian Y 2019 J. Mater. Chem. C 7 12121 [98] Wang H,WangW, Zhong Y, Li D, Li Z, Xu X, Song X, Chen Y, Huang P and Mei A 2022 Adv. Mater. 34 2206122 [99] Yan C, Li Y, Li R, Ma R, Li J, Xin W, Liu W, Xu H and Liu Y 2024 Laser Photonics Rev. 18 2400951 [100] Ma R, Ren H, Yan C, Li Y, Li J, Xin W, Liu W, Zhao X G, Yang L and Feng S 2024 ACS Photonics 11 5339 [101] Yu Y, Dong C-D, Binder R, Schumacher S and Ning C Z 2023 ACS Nano 17 4230 [102] Yang S, Chen W, Sa B, Guo Z, Zheng J, Pei J and Zhan H 2023 Nano Lett. 23 3070 [103] Du Q, Zhu C, Yin Z, Na G, Cheng C, Han Y, Liu N, Niu X, Zhou H and Chen H 2020 ACS Nano 14 5806 [104] Khan A R, Liu B, Lu T, Zhang L, Sharma A, Zhu Y, Ma W and Lu Y 2020 ACS Nano 14 15806 [105] Mennel L, Smejkal V, Linhart L, Burgdörfer J, Libisch F and Mueller T 2020 Nano Lett. 20 4242 [106] F. Imani M, Smith D R and del Hougne P 2020 Adv. Funct. Mater. 30 2005310 [107] Epstein I, Terrés B, Chaves A J, Pusapati V V, Rhodes D A, Frank B, Zimmermann V, Qin Y, Watanabe K and Taniguchi T 2020 Nano Lett. 20 3545 [108] Woo S Y, Zobelli A, Schneider R, Arora A, Preuß J A, Carey B J, Michaelis de Vasconcellos S, Palummo M, Bratschitsch R and Tizei L H 2023 Phys. Rev. B 107 155429 [109] Lee S, Seo D, Park S H, Izquierdo N, Lee E H, Younas R, Zhou G, Palei M, Hoffman A J and Jang M S 2023 Nat. Commun. 14 3889 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|