Abstract In order to investigate the effect of different doping types on the band alignment of heterojunctions, we prepared PtSe/n-GaN, PtSe/p-GaN, and PtSe/u-GaN heterojunctions by wet transfer technique. The valence band offsets (VBO) of the three heterojunctions were measured by x-ray photoelectron spectroscopy (XPS), while the PtSe/n-GaN is 3.700.15 eV, PtSe/p-GaN is 0.2640.15 eV, and PtSe/u-GaN is 3.020.15 eV. The conduction band offset (CBO) of the three heterojunctions was calculated from the material bandgap and VBO, while the PtSe/n-GaN is 0.610.15 eV, PtSe/p-GaN is 2.830.15 eV, and PtSe/u-GaN is 0.070.15 eV. This signifies that both PtSe/u-GaN and PtSe/p-GaN exhibit type-I band alignment, but the PtSe/n-GaN heterojunction has type-III band alignment. This signifies that the band engineering of PtSe/GaN heterojunction can be achieved by manipulating the concentration and type of doping, which is significantly relevant for the advancement of related devices through the realization of band alignment and the modulation of the material properties of the PtSe/GaN heterojunction.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874108), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2024-04), and the Gansu Provincial Scientific and Technologic Planning Program (Grant No. 22ZD6GE016).
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏) Band alignment of heterojunctions formed by PtSe2 with doped GaN 2025 Chin. Phys. B 34 047304
[1] Karim Khan, Ayesha Khan Tareen, Muhammad Aslam, Wang R H, Zhang Y P, Mahmood Asif, Ouyang Z B, Zhang H and Guo Z Y 2020 J. Mater. Chem. C 8 387 [2] Zeng S, Tang Z, Liu C and Zhou P 2021 Nano Research 14 1752 [3] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768 [4] Xia W, Dai L, Yu P, et al. 2017 Nanoscale 9 4324 [5] Yu X, Wang X, Zhou F, Qu J and Song J 2021 Adv. Funct. Mater. 31 2104260 [6] Hu W and Yang Jinlong 2017 J. Mater. Chem. C 5 12289 [7] Chen X, Pan W Guo, Guo R Tang, Hu X, Bi Z Xu and Wang J 2022 J. Mater. Chem. A 10 7604 [8] Li T, She Y, Yan C, Miao J and Jariwala D 2023 MRS Bull. 48 899 [9] Yu H, Memon M H, Wang D, Ren Z, Zhang H, Huang C, Tian M, Sun H and Long S 2021 Opt. Lett. 46 3271 [10] Song W, Chen J, Li Z and Fang X 2021 Adv Mater. 33 2101059 [11] Chen B, Wu P, Su V, et al. 2017 Nano Lett. 17 6345 [12] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [13] Upadhyay S N, Satrughna J A K and Pakhira S 2021 Emergent Mater. 4 951 [14] Yin X, Tang C S, Zheng Y, et al. 2021 Chem. Soc. Rev. 50 10087 [15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [16] Yin Z, Li H, Li H, et al. 2012 ACS Nano 6 74 [17] Xie Y, Zhang B, Wang S, et al. 2017 Adv. Mater. 29 1605972 [18] Baek D H and Kim J 2017 Sensors and Actuators B: Chemical 250 686 [19] Yu Z, Ong Z, Li S, et al. 2017 Adv. Funct. Mater. 27 1604093 [20] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664 [21] Hu Y, Li X, Lushington A, et al. 2013 ECS J. Solid State Sci. Technol. 2 3034 [22] Wang G,Wang Z, McEvoy N, Fan P and BlauWJ 2021 Adv. Mater. 33 2004070 [23] Kandemir A, Akbali B, Kahraman Z, et al. 2018 Semicond. Sci. Technol. 33 085002 [24] Ghasemi F, Taghavimendi R and Bakhshayeshi A 2020 Opt. Quantum Electron 52 492 [25] Zhao Y, Qiao J, Yu Z, et al. 2017 Adv. Mater. 29 1604230 [26] Mc Manus J B, Horvath D V, Browne M P, et al. 2020 Nanotechnology 31 375601 [27] Meng X, Shen Y, Liu J, et al. 2021 Applied Catalysis A: General 624 118332 [28] Kim K S, Oh C S, Lee W H, et al. 2000 J. Crystal Growth 210 505 [29] Fares C, Ren F, Lambers E, et al. 2018 Semicond. Sci. Technol. 34 025006 [30] Yan B, Liu S, Heng Y, et al. 2017 Nanoscale Res. Lett. 12 363 [31] Lee D, Zhou J, Chen G, et al. 2019 Adv. Electron. Mater. 5 1800624 [32] Sezen H, Ozbay E, Aktas O, et al. 2011 Appl. Phys. Lett. 98 111901 [33] Lewandków R, Grodzicki M and Mazur P 2021 Surf. Rev. Lett. 28 2150077 [34] Um D, Lee Y, Lim S, Park Seungyoung, Lee Hochan and Ko Hyunhyub 2016 ACS Appl. Mater. Interfaces 8 33955 [35] Kang M S, Lee W Y, Yoon Y G, Choi J W, Kim G S, Kim S H, Park N W and Lee S K 2022 ACS Appl. Mater. Interfaces 14 51881 [36] Fang C Z, Wang Y B, Li T Z, Zeng X Y, Li X X, Yang J Y, Wang D, Zhang H R, Liu Y, Hao Y and Han G Q 2024 Laser Photon. Rev. Early View 2401001 [37] Yu X, Yu P, Wu D, et al. 2018 Nat. Commun. 9 1545 [38] Mujib S, Santanu Mukherjee, Ren Z, et al. 2020 Royal Soc. Open Sci. 7 200214 [39] Zhao Y 2016 “High impermeability and layer-dependent electronic properties of two-dimensional layered materials”, PolyU Electronic Theses [40] Zhou Z, Xu T, Zhang C, et al. 2021 Nano Research 14 1704 [41] Hong SK, Hanada T, Makino H, et al. 2001 Appl. Phys. Lett. 78 3349 [42] Chiu M H, Tseng W H, Tang H L, et al. 2017 Adv. Funct. Mater. 27 1603756 [43] Tamin C, Chaumont D, Heintz O and Adnane M 2020 Surf. Interface Analysis 52 985 [44] Kraut E A, Grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620 [45] Li H, Liu X, Sang L, et al. 2014 Phys. Status Solidi B 251 788 [46] Fan H B, Sun G S, Yang S Y, et al. 2008 Appl. Phys. Lett. 92 192107 [47] Wang T, Jing C Q, DongWH, Zhang J H and Zhang Y 2010 Mol. Biol. Rep. 37 1099 [48] Tangi M, Mishra P, Tseng C, et al. 2017 ACS Appl Mater. Interfaces 9 9110 [49] Bhorkar K, Sygellou L, Cathelinaud M, Ren D, Adam J L and Yannopoulos S N 2022 ACS Appl. Electron. Mater. 4 4814 [50] Wang W, Li K, Wang Y, Jiang W, Liu X and Qi H 2019 Appl. Phys. Lett. 114 201601 [51] Su S C, Zhang H Y, Zhao L Z, He M and Ling C C 2014 J. Phys. D: Appl. Phys. 47 215102 [52] Cook T E, Fulton C C, MecouchWJ, et al. 2003 J. Appl. Phys. 93 3995 [53] Chung C, Yeh H, Wu P, et al. 2021 ACS Nano 15 4627 [54] Wu C I, Kahn A, Taskar N, et al. 1998 J. Appl. Phys. 83 4249 [55] Zhang L, Yang T, Sahdan MF, et al. 2021 Adv. Electron. Mater. 7 2100559 [56] Köhler K, Wiegert J, Menner H P, Maier M and Kirste L 2008 Appl. Phys. 103 023706 [57] Siol S, Hellmann J C, Tilley S D, et al. 2016 ACS Appl Mater Interfaces 8 21824 [58] Halidou I, Benzarti Z, Chine Z, Boufaden T and El Jani B 2001 Microelectron. J. 32 137 [59] Chine Z, Rebey A, Touati H, et al. 2006 Phys. Status Solidi (a) 203 1954 [60] Krost A, Dadgar A, Strassburger G and Clos R 2003 Phys. Status Solidi (a) 200 26 [61] Schenk H P D, Borenstain S I, Berezin A, et al. 2008 J. Appl. Phys. 103 103502 [62] Xie J, Mita S, Rice A, et al. 2011 Appl. Phys. Lett. 98 202101 [63] Miceli G and Pasquarello A 2016 Phys. Rev. B 93 165207 [64] Hashizume T 2003 J. Appl. Phys. 94 431 [65] Idé J, Mothy S, Savoyant A, Alain Fritsch, et al. 2013 Int. J. Quantum Chem. 113 580
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.