Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 047304    DOI: 10.1088/1674-1056/adb67b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band alignment of heterojunctions formed by PtSe2 with doped GaN

Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟)†, Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏)
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  In order to investigate the effect of different doping types on the band alignment of heterojunctions, we prepared PtSe2/n-GaN, PtSe2/p-GaN, and PtSe2/u-GaN heterojunctions by wet transfer technique. The valence band offsets (VBO) of the three heterojunctions were measured by x-ray photoelectron spectroscopy (XPS), while the PtSe2/n-GaN is 3.70±0.15 eV, PtSe2/p-GaN is 0.264±0.15 eV, and PtSe2/u-GaN is 3.02±0.15 eV. The conduction band offset (CBO) of the three heterojunctions was calculated from the material bandgap and VBO, while the PtSe2/n-GaN is 0.61±0.15 eV, PtSe2/p-GaN is 2.83±0.15 eV, and PtSe2/u-GaN is 0.07±0.15 eV. This signifies that both PtSe2/u-GaN and PtSe2/p-GaN exhibit type-I band alignment, but the PtSe2/n-GaN heterojunction has type-III band alignment. This signifies that the band engineering of PtSe2/GaN heterojunction can be achieved by manipulating the concentration and type of doping, which is significantly relevant for the advancement of related devices through the realization of band alignment and the modulation of the material properties of the PtSe2/GaN heterojunction.
Keywords:  van der Waals heterojunction      x-ray photoelectron spectroscopy      band alignment      gallium nitride      platinum diselenide  
Received:  29 October 2024      Revised:  20 December 2024      Accepted manuscript online:  15 February 2025
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  71.20.Nr (Semiconductor compounds)  
  71.20.Be (Transition metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61874108), the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2024-04), and the Gansu Provincial Scientific and Technologic Planning Program (Grant No. 22ZD6GE016).
Corresponding Authors:  Guijuan Zhao     E-mail:  zhaogj@lzu.edu.cn

Cite this article: 

Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏) Band alignment of heterojunctions formed by PtSe2 with doped GaN 2025 Chin. Phys. B 34 047304

[1] Karim Khan, Ayesha Khan Tareen, Muhammad Aslam, Wang R H, Zhang Y P, Mahmood Asif, Ouyang Z B, Zhang H and Guo Z Y 2020 J. Mater. Chem. C 8 387
[2] Zeng S, Tang Z, Liu C and Zhou P 2021 Nano Research 14 1752
[3] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[4] Xia W, Dai L, Yu P, et al. 2017 Nanoscale 9 4324
[5] Yu X, Wang X, Zhou F, Qu J and Song J 2021 Adv. Funct. Mater. 31 2104260
[6] Hu W and Yang Jinlong 2017 J. Mater. Chem. C 5 12289
[7] Chen X, Pan W Guo, Guo R Tang, Hu X, Bi Z Xu and Wang J 2022 J. Mater. Chem. A 10 7604
[8] Li T, She Y, Yan C, Miao J and Jariwala D 2023 MRS Bull. 48 899
[9] Yu H, Memon M H, Wang D, Ren Z, Zhang H, Huang C, Tian M, Sun H and Long S 2021 Opt. Lett. 46 3271
[10] Song W, Chen J, Li Z and Fang X 2021 Adv Mater. 33 2101059
[11] Chen B, Wu P, Su V, et al. 2017 Nano Lett. 17 6345
[12] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[13] Upadhyay S N, Satrughna J A K and Pakhira S 2021 Emergent Mater. 4 951
[14] Yin X, Tang C S, Zheng Y, et al. 2021 Chem. Soc. Rev. 50 10087
[15] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[16] Yin Z, Li H, Li H, et al. 2012 ACS Nano 6 74
[17] Xie Y, Zhang B, Wang S, et al. 2017 Adv. Mater. 29 1605972
[18] Baek D H and Kim J 2017 Sensors and Actuators B: Chemical 250 686
[19] Yu Z, Ong Z, Li S, et al. 2017 Adv. Funct. Mater. 27 1604093
[20] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[21] Hu Y, Li X, Lushington A, et al. 2013 ECS J. Solid State Sci. Technol. 2 3034
[22] Wang G,Wang Z, McEvoy N, Fan P and BlauWJ 2021 Adv. Mater. 33 2004070
[23] Kandemir A, Akbali B, Kahraman Z, et al. 2018 Semicond. Sci. Technol. 33 085002
[24] Ghasemi F, Taghavimendi R and Bakhshayeshi A 2020 Opt. Quantum Electron 52 492
[25] Zhao Y, Qiao J, Yu Z, et al. 2017 Adv. Mater. 29 1604230
[26] Mc Manus J B, Horvath D V, Browne M P, et al. 2020 Nanotechnology 31 375601
[27] Meng X, Shen Y, Liu J, et al. 2021 Applied Catalysis A: General 624 118332
[28] Kim K S, Oh C S, Lee W H, et al. 2000 J. Crystal Growth 210 505
[29] Fares C, Ren F, Lambers E, et al. 2018 Semicond. Sci. Technol. 34 025006
[30] Yan B, Liu S, Heng Y, et al. 2017 Nanoscale Res. Lett. 12 363
[31] Lee D, Zhou J, Chen G, et al. 2019 Adv. Electron. Mater. 5 1800624
[32] Sezen H, Ozbay E, Aktas O, et al. 2011 Appl. Phys. Lett. 98 111901
[33] Lewandków R, Grodzicki M and Mazur P 2021 Surf. Rev. Lett. 28 2150077
[34] Um D, Lee Y, Lim S, Park Seungyoung, Lee Hochan and Ko Hyunhyub 2016 ACS Appl. Mater. Interfaces 8 33955
[35] Kang M S, Lee W Y, Yoon Y G, Choi J W, Kim G S, Kim S H, Park N W and Lee S K 2022 ACS Appl. Mater. Interfaces 14 51881
[36] Fang C Z, Wang Y B, Li T Z, Zeng X Y, Li X X, Yang J Y, Wang D, Zhang H R, Liu Y, Hao Y and Han G Q 2024 Laser Photon. Rev. Early View 2401001
[37] Yu X, Yu P, Wu D, et al. 2018 Nat. Commun. 9 1545
[38] Mujib S, Santanu Mukherjee, Ren Z, et al. 2020 Royal Soc. Open Sci. 7 200214
[39] Zhao Y 2016 “High impermeability and layer-dependent electronic properties of two-dimensional layered materials”, PolyU Electronic Theses
[40] Zhou Z, Xu T, Zhang C, et al. 2021 Nano Research 14 1704
[41] Hong SK, Hanada T, Makino H, et al. 2001 Appl. Phys. Lett. 78 3349
[42] Chiu M H, Tseng W H, Tang H L, et al. 2017 Adv. Funct. Mater. 27 1603756
[43] Tamin C, Chaumont D, Heintz O and Adnane M 2020 Surf. Interface Analysis 52 985
[44] Kraut E A, Grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620
[45] Li H, Liu X, Sang L, et al. 2014 Phys. Status Solidi B 251 788
[46] Fan H B, Sun G S, Yang S Y, et al. 2008 Appl. Phys. Lett. 92 192107
[47] Wang T, Jing C Q, DongWH, Zhang J H and Zhang Y 2010 Mol. Biol. Rep. 37 1099
[48] Tangi M, Mishra P, Tseng C, et al. 2017 ACS Appl Mater. Interfaces 9 9110
[49] Bhorkar K, Sygellou L, Cathelinaud M, Ren D, Adam J L and Yannopoulos S N 2022 ACS Appl. Electron. Mater. 4 4814
[50] Wang W, Li K, Wang Y, Jiang W, Liu X and Qi H 2019 Appl. Phys. Lett. 114 201601
[51] Su S C, Zhang H Y, Zhao L Z, He M and Ling C C 2014 J. Phys. D: Appl. Phys. 47 215102
[52] Cook T E, Fulton C C, MecouchWJ, et al. 2003 J. Appl. Phys. 93 3995
[53] Chung C, Yeh H, Wu P, et al. 2021 ACS Nano 15 4627
[54] Wu C I, Kahn A, Taskar N, et al. 1998 J. Appl. Phys. 83 4249
[55] Zhang L, Yang T, Sahdan MF, et al. 2021 Adv. Electron. Mater. 7 2100559
[56] Köhler K, Wiegert J, Menner H P, Maier M and Kirste L 2008 Appl. Phys. 103 023706
[57] Siol S, Hellmann J C, Tilley S D, et al. 2016 ACS Appl Mater Interfaces 8 21824
[58] Halidou I, Benzarti Z, Chine Z, Boufaden T and El Jani B 2001 Microelectron. J. 32 137
[59] Chine Z, Rebey A, Touati H, et al. 2006 Phys. Status Solidi (a) 203 1954
[60] Krost A, Dadgar A, Strassburger G and Clos R 2003 Phys. Status Solidi (a) 200 26
[61] Schenk H P D, Borenstain S I, Berezin A, et al. 2008 J. Appl. Phys. 103 103502
[62] Xie J, Mita S, Rice A, et al. 2011 Appl. Phys. Lett. 98 202101
[63] Miceli G and Pasquarello A 2016 Phys. Rev. B 93 165207
[64] Hashizume T 2003 J. Appl. Phys. 94 431
[65] Idé J, Mothy S, Savoyant A, Alain Fritsch, et al. 2013 Int. J. Quantum Chem. 113 580
[1] Theoretical characterization of the adsorption configuration of pyrrole on Si(100) surface by x-ray spectroscopy
Hao-Qing Li(李好情), Jing Ming(明静), Zhi-Ang Jiang(姜志昂), Hai-Bo Li(李海波), Yong Ma(马勇), and Xiu-Neng Song(宋秀能). Chin. Phys. B, 2024, 33(2): 026102.
[2] Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures
Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇). Chin. Phys. B, 2023, 32(8): 087801.
[3] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[4] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[5] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[6] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[7] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[8] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[9] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[10] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[11] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[12] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[13] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[14] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[15] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
No Suggested Reading articles found!