|
|
Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5 |
Bei Jiang(江北)1,2,†, Jingyu Yao(姚静宇)1,2,†, Dayu Yan(闫大禹)1,2,†, Zhaopeng Guo(郭照芃)1, Gexing Qu(屈歌星)1,2, Xiutong Deng(邓修同)1,2, Yaobo Huang(黄耀波)4, Hong Ding(丁洪)5,6, Youguo Shi(石友国)1,2,3, Zhijun Wang(王志俊)1,2, and Tian Qian(钱天)1,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; 5 Tsung-Dao Lee Institute, New Cornerstone Science Laboratory, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 201210, China; 6 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract Manipulating emergent quantum phenomena is a key issue for understanding the underlying physics and contributing to possible applications. Here we study the evolution of insulating ground states of Ta$_{2}$Pd$_{3}$Te$_{5}$ and Ta$_{2}$Ni$_{3}$Te$_{5}$ under in-situ surface potassium deposition via angle-resolved photoemission spectroscopy. Our results confirm the excitonic insulator character of Ta$_{2}$Pd$_{3}$Te$_{5}$. Upon surface doping, the size of its global gap decreases obviously. After a deposition time of more than 7 min, the potassium atoms induce a metal-insulator phase transition and make the system recover to a normal state. In contrast, our results show that the isostructural compound Ta$_{2}$Ni$_{3}$Te$_{5}$ is a conventional insulator. The size of its global gap decreases upon surface doping, but persists positive throughout the doping process. Our results not only confirm the excitonic origin of the band gap in Ta$_{2}$Pd$_{3}$Te$_{5}$, but also offer an effective method for designing functional quantum devices in the future.
|
Received: 20 February 2024
Revised: 12 March 2024
Accepted manuscript online: 21 March 2024
|
PACS:
|
74.25.Jb
|
(Electronic structure (photoemission, etc.))
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
Fund: Project supported by the Ministry of Science and Technology of China (Grant No. 2022YFA1403800), the National Natural Science Foundation of China (Grant Nos. U2032204, 12188101, and U22A6005), the Chinese Academy of Sciences (Grant No. XDB33000000), the Synergetic Extreme Condition User Facility (SECUF), and the Center for Materials Genome. |
Corresponding Authors:
Tian Qian
E-mail: tqian@iphy.ac.cn
|
Cite this article:
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天) Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5 2024 Chin. Phys. B 33 067402
|
[1] Mott N F 1961 Philos. Mag. 6 287 [2] Halperin B I and Rice T M 1968 Rev. Mod. Phys. 40 755 [3] Kohn W 1967 Phys. Rev. Lett. 19 439 [4] Jérome D, Rice T M and Kohn W 1967 Phys. Rev. 158 462 [5] Chen L, Han T T, Cai C, Wang Z G, Wang Y D, Xin Z M and Zhang Y 2020 Phys. Rev. B 102 161116 [6] Monney C, Cercellier H, Battaglia C, Schwier E F, Didiot C, Garnier M G, Beck H and Aebi P 2009 Physica B 404 3172 [7] Sun B S, Zhao W J, Palomaki T, Fei Z Y, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X D, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M and Cobden D H 2022 Nat. Phys. 18 94 [8] Tang T W, Wang H Y, Duan S F, Yang Y Y, Huang C Z, Guo Y F, Qian D and Zhang W T 2020 Phys. Rev. B 101 235148 [9] Okazaki K, Ogawa Y, Suzuki T, Yamamoto T, Someya T, Michimae S, Watamabe M, Lu Y F, Nohara M, Takagi H, Katayama N, Sawa H, Fujisawa M, Kanai T, Ishii N, Itatani J, Mizokawa T and Shin S 2018 Nat. Commun. 9 4322 [10] Wilson J A 1977 Solid State Commun. 22 551 [11] Wilson J A 1978 Phys. Status Solidi B 86 11 [12] Pillo T, Hayoz J, Berger H, Lévy F, Schlapbach L and Aebi P 2000 Phys. Rev. B 61 16213 [13] Kidd T E, Miller T, Chou M Y and Chiang T C 2002 Phys. Rev. Lett. 88 226402 [14] Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forró L 2007 Phys. Rev. Lett. 99 146403 [15] Monney C, Schwier E F, Garnier M G, Mariotti N, Didiot C, Beck H, Aebi P, Cercellier H, Marcus J, Battaglia C, Berger H and Titov A N 2010 Phys. Rev. B 81 155104 [16] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, Wezel J V and Abbamonte P 2017 Science 358 1314 [17] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M and Takagi H 2009 Phys. Rev. Lett. 103 026402 [18] Kaneko T, Toriyama T, Konishi T and Ohta Y 2013 Phys. Rev. B 87 035121 [19] Seki K, Wakisaka Y, Kaneko T, Toriyama T, Konishi T, Sudayama T, Saini N L, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, Takagi H, Mizokawa T and Ohta Y 2014 Phys. Rev. B 90 155116 [20] Larkin T I, Yaresko A N, Pröpper D, Kikoin K A, Lu Y F, Takayama T, Mathis Y L, Rost A W, Takagi H, Keimer B and Boris A V 2017 Phys. Rev. B 95 195144 [21] Lu Y F, Kono H, Larkin T I, Rost A W, Takayama T, Boris A V, Keimer B and Takagi H 2017 Nat. Commun. 8 14408 [22] Sugimoto K, Nishimoto S, Kaneko T and Ohta Y 2018 Phys. Rev. Lett. 120 247602 [23] Fukutani K, Stania R, Kwon C I, Kim J S, Kong K J, Kim J and Yeom H W 2021 Nat. Phys. 17 1024 [24] Zhao J F, Ou H W, Wu G, Xie B P, Zhang Y, Shen D W, Wei J, Yang L X, Dong J K, Arita M, Namatame H, Taniguchi M, Chen X H and Feng D L 2007 Phys. Rev. Lett. 99 146401 [25] Fukutani K, Stania R, Jung J, Schwier E F, Shimada K, Kwon C I, Kim J S and Yeom H W 2019 Phys. Rev. Lett. 123 206401 [26] Mitsuoka T, Suzuki T, Takagi H, Katayama N, Sawa H, Nohara M, Watanabe M, Xu J D, Ren Q H, Fujisawa M, Kanai T, Itatani J, Shin S, Okazaki K and Mizokawa T 2020 J. Phys. Soc. Jpn. 89 124703 [27] Huang J R, Jiang B, Yao J Y, et al. 2024 Phys. Rev. X 14 011046 [28] Zhang P, Dong Y Y, Yan D Y, et al. 2024 Phys. Rev. X 14 011047 [29] Yao J Y, Sheng H H, Zhang R H, Pang R T, Zhou J J, Wu Q S, Weng H M, Dai X, Fang Z and Wang Z J 2024 arXiv: 2401.01222 [condmat.mtrl-sci] [30] Guo Z P, Yan D Y, Sheng H H, Nie S M, Shi Y G and Wang Z J 2021 Phys. Rev. B 103 115145 [31] Qian T, Xu N, Shi Y B, Nakayama K, Richard P, Kawahara T, Sato T, Takahashi T, Neupane M, Xu Y M, Wang X P, Xu G, Dai X, Fang Z, Cheng P, Wen H H and Ding H 2011 Phys. Rev. B 83 140513 [32] Gao S Y, Zhang S, Wang C X, et al. 2023 Phys. Rev. X 13 041049 [33] Khoo K H, Mazzoni M S C and Louie S G 2004 Phys. Rev. B 69 201401 [34] Ishigami M, Sau J D, Aloni S, Cohen M L and Zettl A 2005 Phys. Rev. Lett. 94 056804 [35] Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325 [36] Kang M G, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A and Kim K S 2017 Nano Lett. 17 1610 [37] Kim J, Balk S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723 [38] Zhang P, Richard P, Qian T, Xu Y M, Dai X and Ding H 2011 Rev. Sci. Instrum. 82 043712 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|