|
Special Issue:
SPECIAL TOPIC — Moiré physics in two-dimensional materials
|
|
|
|
Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators |
| Zijian Ma(马子健)1 and Hongyi Yu(俞弘毅)1,2,† |
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China |
|
|
|
|
Abstract In moiré-patterned van der Waals structures of transition metal dichalcogenides, correlated insulators can form under integer and fractional fillings, whose transport properties are governed by various quasiparticle excitations including holons, doublons and interlayer exciton insulators. Here we theoretically investigate the nearest-neighbor inter-site hoppings of holons and interlayer exciton insulators. Our analysis indicates that these hopping strengths are significantly enhanced compared to that of a single carrier. The underlying mechanism can be attributed to the strong Coulomb interaction between carriers at different sites. For the interlayer exciton insulator consisting of a holon and a carrier in different layers, we have also obtained its effective Bohr radius and energy splitting between the ground and the first-excited states.
|
Received: 10 February 2025
Revised: 20 March 2025
Accepted manuscript online: 11 April 2025
|
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
| |
73.20.Qt
|
(Electron solids)
|
| |
73.21.Ac
|
(Multilayers)
|
| |
73.21.Cd
|
(Superlattices)
|
|
| Fund: H.Y. acknowledges support by the National Natural Science Foundation of China (Grant No. 12274477) and the Department of Science and Technology of Guangdong Province in China (Grant No. 2019QN01X061). |
Corresponding Authors:
Hongyi Yu
E-mail: yuhy33@mail.sysu.edu.cn
|
Cite this article:
Zijian Ma(马子健) and Hongyi Yu(俞弘毅) Interaction enhanced inter-site hoppings for holons and interlayer exciton insulators in moiré correlated insulators 2025 Chin. Phys. B 34 097303
|
[1] Mak K F and Shan J 2022 Nat. Nanotechnol. 17 686 [2] Wilson N P, Yao W, Shan J, et al. 2021 Nature 599 383 [3] Jin C, Regan E C, Yan A, et al. 2019 Nature 567 76 [4] Jin C, Regan E C, Wang D, et al. 2019 Nat. Phys. 15 1140 [5] Tran K, Moody G, Wu F, et al. 2019 Nature 567 71 [6] Seyler K L, Rivera P, Yu H, et al. 2019 Nature 567 66 [7] Brotons-Gisbert M, Baek H, Molina-Sánchez A, et al. 2020 Nat. Mater. 19 630 [8] Baek H, Brotons-Gisbert M, Koong Z X, et al. 2020 Sci. Adv. 6 eaba8526 [9] Zhang Z, Wang Y, Watanabe K, et al. 2020 Nat. Phys. 16 1093 [10] Li H, Li S, Naik M H, et al. 2021 Nat. Mater. 20 945 [11] Gatti G, Issing J, Rademaker L, et al. 2023 Phys. Rev. Lett. 131 046401 [12] Li E, Hu J X, Feng X, et al. 2021 Nat. Commun. 12 5601 [13] Tang Y, Li L, Li T, et al. 2020 Nature 579 353 [14] Regan E C, Wang D, Jin C, et al. 2020 Nature 579 359 [15] Shimazaki Y, Schwartz I, Watanabe K, et al. 2020 Nature 580 472 [16] Wang L, Shih E M, Ghiotto A, et al. 2020 Nat. Mater. 19 861 [17] Chu Z, Regan E C, Ma X, et al. 2020 Phys. Rev. Lett. 125 186803 [18] Xu Y, Liu S, Rhodes D A, et al. 2020 Nature 587 214 [19] Huang X, Wang T, Miao S, et al. 2021 Nat. Phys. 17 715 [20] Liu E, Taniguchi T, Watanabe K, et al. 2021 Phys. Rev. Lett. 127 037402 [21] Li H, Li S, Regan E C, et al. 2021 Nature 597 650 [22] Li H, Li S, Naik M H, et al. 2021 Nat. Phys. 17 1114 [23] Shimazaki Y, Kuhlenkamp C, Schwartz I, et al. 2021 Phys. Rev. X 11 021027 [24] Jin C, Tao Z, Li T, et al. 2021 Nat. Mater. 20 940 [25] Murakami Y, Takayoshi S, Koga A, et al. 2021 Phys. Rev. B 103 035110 [26] Zhang Z, Regan E C, Wang D, et al. 2022 Nat. Phys. 18 1214 [27] Gu J, Ma L, Liu S, et al. 2022 Nat. Phys. 18 395 [28] Chen D, Lian Z, Huang X, et al. 2022 Nat. Phys. 18 1171 [29] Xu Y, Kang K, Watanabe K, et al. 2022 Nat. Nanotechnol. 17 934 [30] Zeng Y, Xia Z, Dery R, et al. 2023 Nat. Mater. 22 175 [31] Li H, Xiang Z, Regan E, et al. 2024 Nat. Nanotechnol. 19 618 [32] Wu F, Xu Q, Wang Q, et al. 2023 Phys. Rev. Lett. 131 256201 [33] Zhou J, Tang J and Yu H 2023 Chin. Phys. B 32 107308 [34] Danovich M, Ruiz-Tijerina D A, Hunt R J, et al. 2018 Phys. Rev. B 97 195452 [35] Kyläpää I and Komsa H P 2015 Phys. Rev. B 92 205418 [36] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406 [37] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318 [38] Chernikov A, Berkelbach T C, Hill H M, et al. 2014 Phys. Rev. Lett. 113 076802 [39] Yu H and Yao W 2021 Phys. Rev. X 11 021042 [40] Schmitt D, Bange J P, Bennecke W, et al. 2022 Nature 608 499 [41] Karni O, Barré E, Pareek V, et al. 2022 Nature 603 247 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|