Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 128103    DOI: 10.1088/1674-1056/ad8db5
RAPID COMMUNICATION Prev   Next  

Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum

Dun Wang(汪顿)1, Albert Y. Xiong2, Julia Q. Zhang2, Zengde She(佘增德)1, Xiaofeng Kang(康晓峰)2, Ying Zhu(朱莹)2, Sanjib Ghosh3, and Qihua Xiong(熊启华)1,2,3,4,†
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2 Tsinghua International School, Beijing 100084, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
4 Frontier Science Center for Quantum Information, Beijing 100084, China
Abstract  The exploration of novel chiral optical platforms holds both fundamental and practical importances, which have shown great promise towards applications in valleytronics, chiral sensing and nanoscopic chiroptics. In this work, we combine two key concepts—chiral bound states in the continuum and exciton polaritons - to showcase a strong chiral response from polaritons. Using the finite element method, we numerically design a CsPbBr$_{3}$ based metasurface that supports intrinsically chiral bound states in the continuum and verify the chirality by calculating the reflection spectrum and eigen-polarization mapping. We further demonstrate chirality-dependent exciton polariton angular dispersion arising from the strong coupling between the chiral BIC and excitons in CsPbBr$_{3}$ by simulating the polariton angle-resolved absorption spectrum. Reciprocity analysis reveals that the polariton photoluminescence in different momentum space locations is selectively enhanced by chiral pumping light. Our results suggest a promising first step towards chiral polaritonics.
Keywords:  bound states in the continuum      chirality      metasurface      perovskite microcavities      exciton polariton  
Received:  27 September 2024      Revised:  30 October 2024      Accepted manuscript online:  01 November 2024
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  71.35.-y (Excitons and related phenomena)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Q. X. gratefully acknowledges the strong funding support from the National Key Research and Development Program of China (Grant No. 2022YFA1204700) and the National Natural Science Foundation of China (Grant Nos. 12020101003, 92056204, and 92250301). S. G. acknowledges the funding support from the National Natural Science Foundation of China (Grant No. 12274034).
Corresponding Authors:  Qihua Xiong     E-mail:  qihua_xiong@tsinghua.edu.cn

Cite this article: 

Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华) Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum 2024 Chin. Phys. B 33 128103

[1] Du W,Wen X, Gérard D, Qiu C W and Xiong Q 2019 Sci. China Phys. Mech. Astron. 63 244201
[2] Parappurath N, Alpeggiani F, Kuipers L and Ewold V 2020 Sci. Adv. 6 eaaw4137
[3] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473
[4] Schaibley JR, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[5] Whittaker P, Kloner R A, Boughner D R and Pickering J G 1994 Basic Res. Cardiol. 89 397
[6] Li J, Schuster G B, Cheon K S, Green M M and Selinger J V 2000 J. Am. Chem. Soc. 122 2603
[7] Chen Y, Du W, Zhang Q, Á valos-Ovando O, Wu J, Xu Q H, Liu N, Okamoto H, Govorov A O, Xiong Q and Qiu CW2022 Nat. Rev. Phys. 4 113
[8] Huang Y, Polojärvi V, Hiura S, Höjer P, Aho A, Isoaho R, Hakkarainen T, Guina M, Sato S, Takayama J, Murayama A, Buyanova I A and Chen W M 2021 Nat. Photonics 15 475
[9] Wang Y, Zheng H, Tang Z, Wang R, Luo X, Shen Y, Yang X, Liu K K, Wang S, Deng S, Shan C X and Zhu H 2023 ACS Photonics 10 1936
[10] Nishizawa N, Nishibayashi K and Munekata H 2017 Proc. Natl. Acad. Sci. USA 114 1783
[11] Zhang Z, Fan F, Li T, Ji Y and Chang S 2020 Chin. Phys. B 29 78707
[12] Shi T, Deng Z L, Geng G, Zeng X, Zeng Y, Hu G, Overvig A, Li J, Qiu C W, Alù A, et al. 2022 Nat. Commun. 13 4111
[13] Chen Y, Feng J, Huang Y, Chen W, Su R, Ghosh S, Hou Y, Xiong Q and Qiu C W 2023 Nat. Mater. 22 1065
[14] Rong K, Duan X, Wang B, Reichenberg D, Cohen A, Liu C L, Mohapatra P K, Patsha A, Gorovoy V, Mukherjee S, Kleiner V, Ismach A, Koren E and Hasman E 2023 Nat. Mater. 22 1085
[15] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 16048
[16] Yin X, Jin J, Soljačić M, Peng C and Zhen B 2020 Nature 580 467
[17] Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, Guan F, Liu X, Shi L and Zi J 2020 Nat. Photonics 14 623
[18] Wang J, Shi L and Zi J 2022 Phys. Rev. Lett. 129 236101
[19] Jiang X, Fang B and Zhan C 2024 Chin. Phys. B 33 34206
[20] Tang H, Hu P, Cui D J, Xiang H and Han D 2022 Chin. Phys. B 31 104209
[21] Bernhardt N, Koshelev K, White S J U, Meng K W C, Froch J E, Kim S, Tran T T, Choi D Y, Kivshar Y and Solntsev A S 2020 Nano Lett. 20 5309
[22] Zhen B, Hsu C W, Lu L, Stone A D and Soljacic M 2014 Phys. Rev. Lett. 113 257401
[23] Lim Y, Seo I C, An S C, Kim Y, Park C, Woo B H, Kim S, Park H R and Jun Y C 2022 Laser Photonics Rev. 17 2200611
[24] Gorkunov M V, Antonov A A and Kivshar Y S 2020 Phys. Rev. Lett. 125 093903
[25] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett. 123 116104
[26] Chen Y, Deng H, Sha X, Chen W, Wang R, Chen Y H, Wu D, Chu J, Kivshar Y S, Xiao S and Qiu C W 2023 Nature 613 474
[27] Zhang X, Liu Y, Han J, Kivshar Y and Song Q 2022 Science 377 1215
[28] Yang J, Shi A, Peng Y, Peng P and Liu J 2024 Chin. Phys. B 33 084206
[29] Muhammad N, Chen Y, Qiu C W and Wang G P 2021 Nano Lett. 21 967
[30] Liu X J, Yu Y, Liu D, Cui Q L, Qi X, Chen Y, Qu G, Song L, Guo G P, Guo G C, et al. 2023 Nano Lett. 23 3209
[31] Ghosh S, Su R, Zhao J, Fieramosca A,Wu J, Li T, Zhang Q, Li F, Chen Z, Liew T, Sanvitto D and Xiong Q 2022 Photonics Insights 1 R04
[32] Koshelev K L, Sychev S K, Sadrieva Z F, Bogdanov A A and Iorsh I V 2018 Phys. Rev. B 98 161113
[33] Kim S, Woo B H, An S C, Lim Y, Seo I C, Kim D S, Yoo S, Park Q H and Jun Y C 2021 Nano Lett. 21 10076
[34] Al-Ani I A M, As’Ham K, Huang L, Miroshnichenko A E, Lei W and Hattori H T 2022 Adv. Opt. Mater. 10 2101120
[35] Ardizzone V, Riminucci F, Zanotti S, Gianfrate A, Efthymiou-Tsironi M, Suarez-Forero D G, Todisco F, De Giorgi M, Trypogeorgos D, Gigli G, Baldwin K, Pfeiffer L, Ballarini D, Nguyen H S, Gerace D and Sanvitto D 2022 Nature 605 447
[36] Berghuis A M, Castellanos GW, Murai S, Pura J L, Abujetas D R, Heijst E, Ramezani M, Sánchez-Gil J A and Rivas J G 2023 Nano Lett. 23 5603
[37] Wu X, Zhang S, Song J, Deng X, Du W, Zeng X, Zhang Y, Zhang Z, Chen Y, Wang Y, et al. 2024 Nat. Commun. 15 3345
[38] Su R, Fieramosca A, Zhang Q, Nguyen H S, Deleporte E, Chen Z, Sanvitto D, Liew T C H and Xiong Q 2021 Nat. Mater. 20 1315
[39] Ermolaev G, Pushkarev A P, Zhizhchenko A, Kuchmizhak A A, Iorsh I, Kruglov I, Mazitov A, Ishteev A, Konstantinova K, Saranin D, Slavich A, Stosic D, Zhukova E S, Tselikov G, Di Carlo A, Arsenin A, Novoselov K S, Makarov S V and Volkov V S 2023 Nano Lett. 23 2570
[40] Evlyukhin A B, Fischer T, Reinhardt C and Chichkov B N 2016 Phys. Rev. B 94 205434
[41] Wu J, Jiang H, Guo Z, Sun Y, Li Y and Chen H 2023 Opt. Lett. 48 916
[42] Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z and Xiong Q 2017 Nano Lett. 17 3982
[43] Balanis C A 2012 Advanced Engineering Electromagnetics 2nd Edn. (Hoboken, New Jersey: John Wiley & Sons) p. 323
[44] Su R, Ghosh S,Wang J, Liu S, Diederichs C, Liew T C H and Xiong Q 2020 Nat. Phys. 16 301
[45] Chen Y X, Ge Q Q, Shi Y, Liu J, Xue D J, Ma J Y, Ding J, Yan H J, Hu J S and Wan L J 2016 J. Am. Chem. Soc. 138 16196
[1] Compact magneto-optical traps using planar optics
Zhi Tan(谭智), Bo Lu(鹿博), Chengyin Han(韩成银), and Chaohong Lee(李朝红). Chin. Phys. B, 2024, 33(9): 093701.
[2] Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system
Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Chin. Phys. B, 2024, 33(8): 084206.
[3] Experimental realization of fractal fretwork metasurface for sound anomalous modulation
Jiajie He(何佳杰), Shumeng Yu(于书萌), Xue Jiang(江雪), and Dean Ta(他得安). Chin. Phys. B, 2024, 33(5): 054301.
[4] Wideband low-scattering metasurface with an in-band reconfigurable transparent window
Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明), Ke Chen(陈克), and Yijun Feng(冯一军). Chin. Phys. B, 2024, 33(2): 024102.
[5] Chiral bound states in a staggered array of coupled resonators
Wu-Lin Jin(金伍林), Jing Li(李静), Jing Lu(卢竞), Zhi-Rui Gong(龚志瑞), and Lan Zhou(周兰). Chin. Phys. B, 2024, 33(2): 020302.
[6] Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
Ya-Jie Zhang(张亚杰), Chao-Long Li(李潮龙), Jia-Qi Luan(栾迦淇), Ming Zhao(赵茗), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2024, 33(10): 104210.
[7] A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations
Yan Shi(史琰), Xi-Ya Xu(徐茜雅), Shao-Ze Wang(王少泽), Wen-Yue Wei(魏文岳), and Quan-Wei Wu(武全伟). Chin. Phys. B, 2024, 33(1): 014201.
[8] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[9] Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array
Lifeng Ma(马丽凤), Shan Du(杜杉), Jun Chang(常军), Weilin Chen(陈蔚霖), Chuhan Wu(武楚晗), Xinxin Shi(石鑫鑫), Yi Huang(黄翼), Yue Zhong(钟乐), and Quanquan Mu(穆全全). Chin. Phys. B, 2023, 32(8): 084201.
[10] High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
Yuhang Gao(高雨航), Yu Tian(田宇), Qingguo Du(杜庆国), Yuanli Wang(王原丽), Qin Fu(付琴), Qiang Bian(卞强), Zhengying Li(李政颖), Shuai Feng(冯帅), and Fangfang Ren(任芳芳). Chin. Phys. B, 2023, 32(7): 074201.
[11] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[12] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[13] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[14] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[15] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
No Suggested Reading articles found!