|
|
Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum |
Dun Wang(汪顿)1, Albert Y. Xiong2, Julia Q. Zhang2, Zengde She(佘增德)1, Xiaofeng Kang(康晓峰)2, Ying Zhu(朱莹)2, Sanjib Ghosh3, and Qihua Xiong(熊启华)1,2,3,4,† |
1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; 2 Tsinghua International School, Beijing 100084, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Frontier Science Center for Quantum Information, Beijing 100084, China |
|
|
Abstract The exploration of novel chiral optical platforms holds both fundamental and practical importances, which have shown great promise towards applications in valleytronics, chiral sensing and nanoscopic chiroptics. In this work, we combine two key concepts—chiral bound states in the continuum and exciton polaritons - to showcase a strong chiral response from polaritons. Using the finite element method, we numerically design a CsPbBr$_{3}$ based metasurface that supports intrinsically chiral bound states in the continuum and verify the chirality by calculating the reflection spectrum and eigen-polarization mapping. We further demonstrate chirality-dependent exciton polariton angular dispersion arising from the strong coupling between the chiral BIC and excitons in CsPbBr$_{3}$ by simulating the polariton angle-resolved absorption spectrum. Reciprocity analysis reveals that the polariton photoluminescence in different momentum space locations is selectively enhanced by chiral pumping light. Our results suggest a promising first step towards chiral polaritonics.
|
Received: 27 September 2024
Revised: 30 October 2024
Accepted manuscript online: 01 November 2024
|
PACS:
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
71.35.-y
|
(Excitons and related phenomena)
|
|
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Q. X. gratefully acknowledges the strong funding support from the National Key Research and Development Program of China (Grant No. 2022YFA1204700) and the National Natural Science Foundation of China (Grant Nos. 12020101003, 92056204, and 92250301). S. G. acknowledges the funding support from the National Natural Science Foundation of China (Grant No. 12274034). |
Corresponding Authors:
Qihua Xiong
E-mail: qihua_xiong@tsinghua.edu.cn
|
Cite this article:
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华) Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum 2024 Chin. Phys. B 33 128103
|
[1] Du W,Wen X, Gérard D, Qiu C W and Xiong Q 2019 Sci. China Phys. Mech. Astron. 63 244201 [2] Parappurath N, Alpeggiani F, Kuipers L and Ewold V 2020 Sci. Adv. 6 eaaw4137 [3] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473 [4] Schaibley JR, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055 [5] Whittaker P, Kloner R A, Boughner D R and Pickering J G 1994 Basic Res. Cardiol. 89 397 [6] Li J, Schuster G B, Cheon K S, Green M M and Selinger J V 2000 J. Am. Chem. Soc. 122 2603 [7] Chen Y, Du W, Zhang Q, Á valos-Ovando O, Wu J, Xu Q H, Liu N, Okamoto H, Govorov A O, Xiong Q and Qiu CW2022 Nat. Rev. Phys. 4 113 [8] Huang Y, Polojärvi V, Hiura S, Höjer P, Aho A, Isoaho R, Hakkarainen T, Guina M, Sato S, Takayama J, Murayama A, Buyanova I A and Chen W M 2021 Nat. Photonics 15 475 [9] Wang Y, Zheng H, Tang Z, Wang R, Luo X, Shen Y, Yang X, Liu K K, Wang S, Deng S, Shan C X and Zhu H 2023 ACS Photonics 10 1936 [10] Nishizawa N, Nishibayashi K and Munekata H 2017 Proc. Natl. Acad. Sci. USA 114 1783 [11] Zhang Z, Fan F, Li T, Ji Y and Chang S 2020 Chin. Phys. B 29 78707 [12] Shi T, Deng Z L, Geng G, Zeng X, Zeng Y, Hu G, Overvig A, Li J, Qiu C W, Alù A, et al. 2022 Nat. Commun. 13 4111 [13] Chen Y, Feng J, Huang Y, Chen W, Su R, Ghosh S, Hou Y, Xiong Q and Qiu C W 2023 Nat. Mater. 22 1065 [14] Rong K, Duan X, Wang B, Reichenberg D, Cohen A, Liu C L, Mohapatra P K, Patsha A, Gorovoy V, Mukherjee S, Kleiner V, Ismach A, Koren E and Hasman E 2023 Nat. Mater. 22 1085 [15] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 16048 [16] Yin X, Jin J, Soljačić M, Peng C and Zhen B 2020 Nature 580 467 [17] Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, Guan F, Liu X, Shi L and Zi J 2020 Nat. Photonics 14 623 [18] Wang J, Shi L and Zi J 2022 Phys. Rev. Lett. 129 236101 [19] Jiang X, Fang B and Zhan C 2024 Chin. Phys. B 33 34206 [20] Tang H, Hu P, Cui D J, Xiang H and Han D 2022 Chin. Phys. B 31 104209 [21] Bernhardt N, Koshelev K, White S J U, Meng K W C, Froch J E, Kim S, Tran T T, Choi D Y, Kivshar Y and Solntsev A S 2020 Nano Lett. 20 5309 [22] Zhen B, Hsu C W, Lu L, Stone A D and Soljacic M 2014 Phys. Rev. Lett. 113 257401 [23] Lim Y, Seo I C, An S C, Kim Y, Park C, Woo B H, Kim S, Park H R and Jun Y C 2022 Laser Photonics Rev. 17 2200611 [24] Gorkunov M V, Antonov A A and Kivshar Y S 2020 Phys. Rev. Lett. 125 093903 [25] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett. 123 116104 [26] Chen Y, Deng H, Sha X, Chen W, Wang R, Chen Y H, Wu D, Chu J, Kivshar Y S, Xiao S and Qiu C W 2023 Nature 613 474 [27] Zhang X, Liu Y, Han J, Kivshar Y and Song Q 2022 Science 377 1215 [28] Yang J, Shi A, Peng Y, Peng P and Liu J 2024 Chin. Phys. B 33 084206 [29] Muhammad N, Chen Y, Qiu C W and Wang G P 2021 Nano Lett. 21 967 [30] Liu X J, Yu Y, Liu D, Cui Q L, Qi X, Chen Y, Qu G, Song L, Guo G P, Guo G C, et al. 2023 Nano Lett. 23 3209 [31] Ghosh S, Su R, Zhao J, Fieramosca A,Wu J, Li T, Zhang Q, Li F, Chen Z, Liew T, Sanvitto D and Xiong Q 2022 Photonics Insights 1 R04 [32] Koshelev K L, Sychev S K, Sadrieva Z F, Bogdanov A A and Iorsh I V 2018 Phys. Rev. B 98 161113 [33] Kim S, Woo B H, An S C, Lim Y, Seo I C, Kim D S, Yoo S, Park Q H and Jun Y C 2021 Nano Lett. 21 10076 [34] Al-Ani I A M, As’Ham K, Huang L, Miroshnichenko A E, Lei W and Hattori H T 2022 Adv. Opt. Mater. 10 2101120 [35] Ardizzone V, Riminucci F, Zanotti S, Gianfrate A, Efthymiou-Tsironi M, Suarez-Forero D G, Todisco F, De Giorgi M, Trypogeorgos D, Gigli G, Baldwin K, Pfeiffer L, Ballarini D, Nguyen H S, Gerace D and Sanvitto D 2022 Nature 605 447 [36] Berghuis A M, Castellanos GW, Murai S, Pura J L, Abujetas D R, Heijst E, Ramezani M, Sánchez-Gil J A and Rivas J G 2023 Nano Lett. 23 5603 [37] Wu X, Zhang S, Song J, Deng X, Du W, Zeng X, Zhang Y, Zhang Z, Chen Y, Wang Y, et al. 2024 Nat. Commun. 15 3345 [38] Su R, Fieramosca A, Zhang Q, Nguyen H S, Deleporte E, Chen Z, Sanvitto D, Liew T C H and Xiong Q 2021 Nat. Mater. 20 1315 [39] Ermolaev G, Pushkarev A P, Zhizhchenko A, Kuchmizhak A A, Iorsh I, Kruglov I, Mazitov A, Ishteev A, Konstantinova K, Saranin D, Slavich A, Stosic D, Zhukova E S, Tselikov G, Di Carlo A, Arsenin A, Novoselov K S, Makarov S V and Volkov V S 2023 Nano Lett. 23 2570 [40] Evlyukhin A B, Fischer T, Reinhardt C and Chichkov B N 2016 Phys. Rev. B 94 205434 [41] Wu J, Jiang H, Guo Z, Sun Y, Li Y and Chen H 2023 Opt. Lett. 48 916 [42] Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z and Xiong Q 2017 Nano Lett. 17 3982 [43] Balanis C A 2012 Advanced Engineering Electromagnetics 2nd Edn. (Hoboken, New Jersey: John Wiley & Sons) p. 323 [44] Su R, Ghosh S,Wang J, Liu S, Diederichs C, Liew T C H and Xiong Q 2020 Nat. Phys. 16 301 [45] Chen Y X, Ge Q Q, Shi Y, Liu J, Xue D J, Ma J Y, Ding J, Yan H J, Hu J S and Wan L J 2016 J. Am. Chem. Soc. 138 16196 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|