|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Exciton insulators in two-dimensional systems |
| Huaiyuan Yang(杨怀远)1, Xi Dai(戴希)1,†, and Xin-Zheng Li(李新征)2,3,4,‡ |
1 Department of Physics, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China; 2 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, China; 3 Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China; 4 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China |
|
|
|
|
Abstract Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials, and in low-dimensional systems this is especially true due to the decrease of screening. In this review, we focus on one unique quantum phase induced by the electron-hole interaction in two-dimensional systems, known as "exciton insulators" (EIs). Although this phase of matter has been studied for more than half a century, suitable platforms for its stable realization remain scarce. We provide an overview of the strategies to realize EIs in accessible materials and structures, along with a discussion on some unique properties of EIs stemming from the band structures of these materials. Additionally, signatures in experiments to distinguish EIs are discussed.
|
Received: 01 May 2025
Revised: 09 June 2025
Accepted manuscript online: 12 June 2025
|
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
| |
73.22.Gk
|
(Broken symmetry phases)
|
| |
71.35.-y
|
(Excitons and related phenomena)
|
|
| Fund: X.-Z. Li is supported by the National Key Research & Development Program of China (Grant Nos. 2022YFA1403500 and 2021YFA1400500) and the National Science Foundation of China (Grant Nos. 62321004, 12234001, and 12474215). The computational resources are provided by the supercomputer center at Peking University, China. X. Dai is supported by New Cornerstone Science Foundation and a fellowship and a CRF award from the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. HKUST SRFS2324-6S01 and C7037-22GF). |
Corresponding Authors:
Xi Dai, Xin-Zheng Li
E-mail: daix@ust.hk;xzli@pku.edu.cn
|
Cite this article:
Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征) Exciton insulators in two-dimensional systems 2025 Chin. Phys. B 34 097301
|
[1] Frenkel J 1931 Phys. Rev. 37 17 [2] Wannier G H 1937 Phys. Rev. 52 191 [3] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927 [4] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802 [5] Ugeda M M, Bradley A J, Shi S F, Da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, et al. 2014 Nat. Mater. 13 1091 [6] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. 2015 ACS Nano 9 11509 [7] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A 2016 Science 353 aac9439 [8] Kovalenko M V, Protesescu L and Bodnarchuk M I 2017 Science 358 745 [9] Girvin S M and Yang K 2019 Modern Condensed Matter Physics (Cambridge University Press) [10] Keldysh L and Kopaev Y V 1965 Soviet Physics Solid State, USSR 6 2219 [11] Kohn W 1967 Phys. Rev. Lett. 19 439 [12] Jérome D, Rice T and Kohn W 1967 Phys. Rev. 158 462 [13] Halperin B and Rice T 1968 Rev. Mod. Phys. 40 755 [14] Murakami Y, Golež D, Kaneko T, Koga A, Millis A J and Werner P 2020 Phys. Rev. B 101 195118 [15] Golež D, Sun Z, Murakami Y, Georges A and Millis A J 2020 Phys. Rev. Lett. 125 257601 [16] Sun Z, Kaneko T, Golež D and Millis A J 2021 Phys. Rev. Lett. 127 127702 [17] Kaneko T, Sun Z, Murakami Y, Golež D and Millis A J 2021 Phys. Rev. Lett. 127 127402 [18] Shao Y and Dai X 2024 Phys. Rev. X 14 021047 [19] Yang H, Wang X and Li X Z 2022 New J. Phys. 24 083010 [20] Yang H, Shao Y, Xu Y, Dai X and Li X Z 2024 Phys. Rev. B 109 L201401 [21] Yang H, Zeng J, Shao Y, Xu Y, Dai X and Li X Z 2024 Phys. Rev. B 109 075167 [22] Du L, Li X, Lou W, Sullivan G, Chang K, Kono J and Du R R 2017 Nat. Commun. 8 1 [23] Wang R, Sedrakyan T A, Wang B, Du L and Du R R 2023 Nature 619 57 [24] Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis A J, Rubio A and Georges A 2020 Phys. Rev. Lett. 124 197601 [25] Jiang Z, Li Y, Zhang S and Duan W 2018 Phys. Rev. B 98 081408 [26] Jiang Z, Li Y, Duan W and Zhang S 2019 Phys. Rev. Lett. 122 236402 [27] Jiang Z, Lou W, Liu Y, Li Y, Song H, Chang K, Duan W and Zhang S 2020 Phys. Rev. Lett. 124 166401 [28] Sethi G, Zhou Y, Zhu L, Yang L and Liu F 2021 Phys. Rev. Lett. 126 196403 [29] Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J and Mak K F 2019 Nature 574 76 [30] Ma L, Nguyen P X, Wang Z, Zeng Y, Watanabe K, Taniguchi T, Mac- Donald A H, Mak K F and Shan J 2021 Nature 598 585 [31] Liu X, Li J,Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P and Dean C R 2022 Science 375 205 [32] Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jäck B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, et al. 2022 Nat. Phys. 18 87 [33] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, et al. 2022 Nat. Phys. 18 94 [34] Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J and Mak K F 2022 Nat. Phys. 18 395 [35] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162 [36] Kozlov A N and Maksimov L A 1966 Sov. Phys. JETP 23 88 [37] Littlewood P, Eastham P, Keeling J, Marchetti F, Simons B and Szymanska M 2004 J. Phys.: Condens. Matter 16 S3597 [38] Bronold F X and Fehske H 2006 Phys. Rev. B 74 165107 [39] Phan V N, Becker K W and Fehske H 2010 Phys. Rev. B 81 205117 [40] Seki K, Eder R and Ohta Y 2011 Phys. Rev. B 84 245106 [41] Perfetto E, Sangalli D, Marini A and Stefanucci G 2019 Phys. Rev. Materials 3 124601 [42] Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forró L 2007 Phys. Rev. Lett. 99 146403 [43] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, et al. 2017 Science 358 1314 [44] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, NoharaMand Takagi H 2009 Phys. Rev. Lett. 103 026402 [45] Lu Y, Kono H, Larkin T, Rost A, Takayama T, Boris A, Keimer B and Takagi H 2017 Nat. Commun. 8 14408 [46] Mor S, Herzog M, Golez D, Werner P, Eckstein M, Katayama N, Nohara M, Takagi H, Mizokawa T, Monney C and Stahler J 2017 Phys. Rev. Lett. 119 086401 [47] Choi J H, Cui P, Lan H and Zhang Z 2015 Phys. Rev. Lett. 115 066403 [48] Jiang Z, Liu Z, Li Y and Duan W 2017 Phys. Rev. Lett. 118 266401 [49] Rasmussen F A and Thygesen K S 2015 The Journal of Physical Chemistry C 119 13169 [50] Thygesen K S 2017 2D Mater. 4 022004 [51] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768 [52] Gao Q, Chan Yh, Jiao P, Chen H, Yin S, Tangprapha K, Yang Y, Li X, Liu Z, Shen D, et al. 2024 Nat. Phys. 20 597 [53] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [54] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [55] Liu C, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601 [56] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [57] Kou L, Ma Y, Sun Z, Heine T and Chen C 2017 The Journal of Physical Chemistry Lett. 8 1905 [58] Lodge M S, Yang S A, Mukherjee S and Weber B 2021 Advanced Materials 33 2008029 [59] Fu L and Kane C L 2007 Phys. Rev. B 76 045302 [60] Dong S and Li Y 2023 Phys. Rev. B 107 235147 [61] Si C, Jin K H, Zhou J, Sun Z and Liu F 2016 Nano Lett. 16 6584 [62] Wang Y, Ji W, Zhang C, Li P, Zhang S, Wang P, Li S and Yan S 2017 Appl. Phys. Lett. 110 213101 [63] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804 [64] Deng J, Shao D, Gao J, Yue C, Weng H, Fang Z and Wang Z 2022 Phys. Rev. B 105 224103 [65] Zhou J, ShanWY, YaoWand Xiao D 2015 Phys. Rev. Lett. 115 166803 [66] Srivastava A and Imamoǧlu A 2015 Phys. Rev. Lett. 115 166802 [67] Chaudhary S, Knapp C and Refael G 2021 Phys. Rev. B 103 165119 [68] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213 [69] Yao Y and Fang Z 2005 Phys. Rev. Lett. 95 156601 [70] Mazza G, Rosner M, Windgatter L, Latini S, Hubener H, Millis A J, Rubio A and Georges A 2020 Phys. Rev. Lett. 124 197601 [71] Seradjeh B, Weber H and Franz M 2008 Phys. Rev. Lett. 101 246404 [72] Seradjeh B, Moore J E and Franz M 2009 Phys. Rev. Lett. 103 066402 [73] Wang R, Erten O, Wang B and Xing D 2019 Nat. Commun. 10 210 [74] Wu Y, Jiang H, Chen H, Liu H, Liu J and Xie X C 2022 Phys. Rev. Lett. 128 106804 [75] Perfetto E and Stefanucci G 2020 Phys. Rev. Lett. 125 106401 [76] Ponomarenko L, Geim A, Zhukov A, Jalil R, Morozov S, Novoselov K, Grigorieva I, Hill E, Cheianov V, Fal’ko V, et al. 2011 Nat. Phys. 7 958 [77] Liu X, Watanabe K, Taniguchi T, Halperin B I and Kim P 2017 Nat. Phys. 13 746 [78] Li J, Taniguchi T, Watanabe K, Hone J and Dean C 2017 Nat. Phys. 13 751 [79] Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, et al. 2022 Nat. Phys. 18 1171 [80] Cao T, Wu M and Louie S G 2018 Phys. Rev. Lett. 120 087402 [81] Zhang X, Shan W Y and Xiao D 2018 Phys. Rev. Lett. 120 077401 [82] Glazov M M, Golub L E,Wang G, Marie X, Amand T and Urbaszek B 2017 Phys. Rev. B 95 035311 [83] Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402 [84] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802 [85] Lu H Z, YaoW, Xiao D and Shen S Q 2013 Phys. Rev. Lett. 110 016806 [86] Gao Y, Yang S A and Niu Q 2014 Phys. Rev. Lett. 112 166601 [87] Yu H, Wu Y, Liu G B, Xu X and Yao W 2014 Phys. Rev. Lett. 113 156603 [88] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805 [89] Garate I and Franz M 2011 Phys. Rev. B 84 045403 [90] Zhu X, Littlewood P B, Hybertsen M S and Rice T M 1995 Phys. Rev. Lett. 74 1633 [91] Bronold F X and Fehske H 2006 Phys. Rev. B 74 165107 [92] Min H, Bistritzer R, Su J J and MacDonald A H 2008 Phys. Rev. B 78 121401 [93] Shim Y P and MacDonald A H 2009 Phys. Rev. B 79 235329 [94] Zhang J and Rossi E 2013 Phys. Rev. Lett. 111 086804 [95] Perali A, Neilson D and Hamilton A R 2013 Phys. Rev. Lett. 110 146803 [96] Conti S, Perali A, Peeters F M and Neilson D 2017 Phys. Rev. Lett. 119 257002 [97] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [98] Zhao Y, Qu H, Zhao J, Kang L and Zhou S 2025 Nano Lett. 25 1108 [99] Liu J, Qu H and Li Y 2024 New J. Phys. 26 103034 [100] Liu J and Li Y 2022 Phys. Rev. B 106 035135 [101] Dong S, Chen Y, Qu H, Lou W K and Chang K 2025 Phys. Rev. Lett. 134 066602 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|