Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017102    DOI: 10.1088/1674-1056/ad7c32
SPECIAL TOPIC — Moiré physics in two-dimensional materials Prev   Next  

Valley-selective manipulation of moiré excitons through optical Stark effect

Chenran Xu(徐晨燃)1,2,†, Jichen Zhou(周纪晨)1,2, Zhexu Shan(单哲旭)1,2, Wenjian Su(苏文健)1,2, Kenji Watanabe3, Takashi Taniguchi4, Dawei Wang(王大伟)1,2, and Yanhao Tang(汤衍浩)1,2
1 School of Physics, Zhejiang University, Hangzhou 310027, China;
2 Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou 310027, China;
3 Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
4 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
Abstract  Semiconductor moiré superlattices provide great platforms for exploring exotic collective excitations. Optical Stark effect, a shift of the electronic transition in the presence of a light field, provides an ultrafast and coherent method of manipulating matter states, which, however, has not been demonstrated in moiré materials. Here, we report the valley-selective optical Stark effect of moiré excitons in the WSe$_{2}$/WS$_{2}$ superlattice by using transient reflection spectroscopy. Prominent valley-selective energy shifts up to 7.8 meV have been observed for moiré excitons, corresponding to pseudo-magnetic fields as large as 34 T. Our results provide a route to coherently manipulate exotic states in moiré superlattices.
Keywords:  optical Stark effect      moiré      exciton      transient reflection spectroscopy  
Received:  28 August 2024      Revised:  03 September 2024      Accepted manuscript online:  18 September 2024
PACS:  71.35.-y (Excitons and related phenomena)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1402400 and 2022YFA1405400), the National Natural Science Foundation of China (Grant Nos. 11934011 and 12274365), Zhejiang Provincial Natural Science Foundation of China (Grant No. LR24A040001), and Open project of Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education) of Shanghai Jiao Tong University. K.W. and T.T. acknowledge support from the JSPS KAKENHI (Grant Nos. 20H00354 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan.
Corresponding Authors:  Chenran Xu     E-mail:  crxu@zju.edu.cn

Cite this article: 

Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩) Valley-selective manipulation of moiré excitons through optical Stark effect 2025 Chin. Phys. B 34 017102

[1] Ye Z, Sun D and Heinz T F 2017 Nat. Phys. 13 26
[2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Vasa P, Wang W, Pomraenke R, Maiuri M, Manzoni C, Cerullo G and Lienau C 2015 Phys. Rev. Lett. 114 036802
[4] Muller A, Fang W, Lawall J and Solomon G S 2009 Phys. Rev. Lett. 103 217402
[5] Huang D, Choi J, Shih C K and Li X 2022 Nat. Nanotechnol. 17 227
[6] Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F and Shan J 2021 Nat. Nanotechnol. 16 52
[7] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2019 Nature 567 76
[8] Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I and Tartakovskii A I 2019 Nature 567 81
[9] Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
[10] Naik M H, Regan E C, Zhang Z, Chan Y H, Li Z, Wang D, Yoon Y, Ong C S, ZhaoW, Zhao S, UtamaMI B, Gao B,Wei X, Sayyad M, Yumigeta K, Watanabe K, Taniguchi T, Tongay S, da Jornada F H, Wang F and Louie S G 2022 Nature 609 52
[11] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, Macdonald A H and Li X 2019 Nature 567 71
[12] Wu F, Xu Q, Wang Q, Chu Y, Li L, Tang J, Liu J, Tian J, Ji Y, Liu L, Yuan Y, Huang Z, Zhao J, Zan X, Watanabe K, Taniguchi T, Shi D, Gu G, Xu Y, Xian L, YangW, Du L and Zhang G 2023 Phys. Rev. Lett. 131 256201
[13] Du L, MolasMR, Huang Z, Zhang G,Wang F and Sun Z 2023 Science 379 1313
[14] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 21001
[15] Sie E J, McLver J W, Lee Y H, Fu L, Kong J and Gedik N 2015 Nat. Mater. 14 290
[16] Kim J, Hong X, Jin C, Shi S F, Chang C Y S, Chiu M H, Li L J and Wang F 2014 Science 346 1205
[17] Slobodeniuk A O, Koutenský P, Bartoš M, Trojánek F, Malý P, Novotný T and Kozák M 2023 npj 2D Mater. Appl. 7 17
[18] Cunningham P D, Hanbicki A T, Reinecke T L, McCreary K M and Jonker B T 2019 Nat. Commun. 10 5539
[19] Sim S, Lee D, Noh M, Cha S, Soh C H, Sung J H, Jo M ho and Choi H 2016 Nat. Commun. 7 13569
[20] Sie E J, Lui C H, Lee Y H, Kong J and Gedik N 2016 Nano Lett. 16 7421
[21] Yong C K, Horng J, Shen Y, Cai H, Wang A, Yang C S, Lin C K, Zhao S, Watanabe K, Taniguchi T and Tongay S 2018 Nat. Phys. 14 1092
[22] Zhang W L, Li X J, Wang S S, Zheng C Y, Li X F and Rao Y J 2019 Nanoscale 11 4571
[23] LaMountain T, Nelson J, Lenferink E J, Amsterdam S H, Murthy A A, Zeng H, Marks T J, Dravid V P, Hersam M C and Stern N P 2021 Nat. Commun. 12 4530
[24] Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L and Dean C R 2013 Science 342 614
[25] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2019 Nature 567 76
[26] Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J and Mak K F 2020 Nature 579 353
[27] Gobato Y G, de Brito C S, Chaves A, Prosnikov M A, Wózniak T, Guo S, Barcelos I D, MiloševićMV,Withers F and Christianen P CM2022 Nano Lett. 22 8641
[28] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D and Rothschild M 2018 Small 14 1801483
[29] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[30] Andersen T I, Scuri G, Sushko A, De Greve K, Sung J, Zhou Y, Wild D S, Gelly R J, Heo H, Bérubé D, Joe A Y, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Park H and Lukin M D 2021 Nat. Mater. 20 480
[31] Xiong R, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S and Jin C 2023 Science 380 860
[32] Lian Z, Meng Y, Ma L, Maity I, Yan L,Wu Q, Huang X, Chen D, Chen X, Chen X, Blei M, Taniguchi T, Watanabe K, Tongay S, Lischner J, Cui Y T and Shi S F 2024 Nat. Phys. 20 34
[1] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[2] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[3] Manipulating optical and electronic properties through interfacial ferroelectricity
Yulu Liu(刘钰璐), Gan Liu(刘敢), and Xiaoxiang Xi(奚啸翔). Chin. Phys. B, 2025, 34(1): 017701.
[4] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[5] Theory and verification of moiré fringes for x-ray three-phase grating interferometer
Yu-Zheng Shan(单雨征), Yong-Shuai Ge(葛永帅), Jun Yang(杨君), Da-Yu Guo(郭大育), Xue-Bao Cai(蔡学宝), Xiao-Ke Liu(刘晓珂), Xiao-Wen Hou(侯晓文), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2024, 33(5): 056101.
[6] Effect of electron-electron interaction on polarization process of exciton and biexciton in conjugated polymer
Xiao-Xue Li(李晓雪), Hua Peng(彭华), Dong Wang(王栋), and Dong Hou(侯栋). Chin. Phys. B, 2024, 33(3): 037201.
[7] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[8] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
[9] Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides
Jiahao Xie(颉家豪), Zewei Li(李泽唯), Shengqiao Wang(王晟侨), and Lijun Zhang(张立军). Chin. Phys. B, 2024, 33(11): 117102.
[10] Peak structure in the interlayer conductance of Moiré superlattices
Yizhou Tao(陶懿洲), Chao Liu(刘超), Mingwen Xiao(肖明文), and Henan Fang(方贺男). Chin. Phys. B, 2024, 33(10): 107301.
[11] Strain tunable excitonic optical properties in monolayer Ga2O3
Hao-Lei Cui(崔浩磊), Zhen Quan(权真), and Shu-Dong Wang(王舒东). Chin. Phys. B, 2024, 33(10): 107104.
[12] Excitonic optical properties in monolayer SnP2S6
Peng-Yuan Chen(陈鹏远), Zhen Quan(权真), and Shu-Dong Wang(王舒东). Chin. Phys. B, 2024, 33(10): 107105.
[13] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[14] Epitaxial growth of trilayer graphene moiré superlattice
Yalong Yuan(袁亚龙), Yanbang Chu(褚衍邦), Cheng Hu(胡成), Jinpeng Tian(田金朋), Le Liu(刘乐), Fanfan Wu(吴帆帆), Yiru Ji(季怡汝), Jiaojiao Zhao(赵交交), Zhiheng Huang(黄智恒), Xiaozhou Zan(昝晓洲), Luojun Du(杜罗军), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Zhiwen Shi(史志文), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2023, 32(7): 077304.
[15] Thickness-dependent exciton relaxation dynamics of few-layer rhenium diselenide
Chang-Fu Huo(霍唱福), Tiantian Yun(云田田), Xiao-Qing Yan(鄢小卿), Zewen Liu(刘泽文), Xin Zhao(赵欣), Wenxiong Xu(许文雄), Qiannan Cui(崔乾楠), Zhi-Bo Liu(刘智波), and Jian-Guo Tian(田建国). Chin. Phys. B, 2023, 32(6): 067203.
No Suggested Reading articles found!