|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Anisotropic electronic and excitonic properties of monolayer SiP2 from the first-principles GW-BSE calculations |
| Zichen Wang(王紫辰)1, Benshu Fan(范本澍)2,†, and Peizhe Tang(汤沛哲)1,2,‡ |
1 School of Materials Science and Engineering, Beihang University, Beijing 100191, China; 2 Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany |
|
|
|
|
Abstract We investigate electronic structures and excitonic properties of monolayer SiP$_2$ within the framework of first-principles GW plus Bethe-Salpeter equation (GW-BSE) calculations. Within the G$_0$W$_0$ approximation, monolayer SiP$_2$ is identified as a direct-gap semiconductor with an electronic gap of 3.14 eV, and the excitons exhibit a hybrid-dimensional character similar to that of the bulk counterpart. The optical absorption spectra reveal pronounced excitonic effects with strong anisotropy: the first bright exciton has a binding energy of 840 meV under x-polarized light, compared with 450 meV under y-polarized light. We further analyze the symmetry origins of the polarization-dependent optical selection rules through group theory. This binding energy difference arises from the intrinsic nature of the excitons: flat-band excitons under x-polarized light and conventional excitons localized at a single $\bm{k}$ point under y-polarized light. Our work enhances the understanding of excitonic behavior in monolayer SiP$_2$ and highlights its potential for polarization-sensitive and directionally tunable optoelectronic applications.
|
Received: 13 May 2025
Revised: 20 June 2025
Accepted manuscript online: 20 June 2025
|
|
PACS:
|
78.66.-w
|
(Optical properties of specific thin films)
|
|
| Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12234011 and 12374053) and the National Key Research and Development Program of China (Grant No. 2024YFA1409100). |
Corresponding Authors:
Benshu Fan, Peizhe Tang
E-mail: benshu.fan@mpsd.mpg.de;peizhet@buaa.edu.cn
|
Cite this article:
Zichen Wang(王紫辰), Benshu Fan(范本澍), and Peizhe Tang(汤沛哲) Anisotropic electronic and excitonic properties of monolayer SiP2 from the first-principles GW-BSE calculations 2025 Chin. Phys. B 34 097801
|
[1] Wilson N P, Yao W, Shan J and Xu X 2022 Nature 599 383 [2] Fu Q, Hu Z, Zhou M, Lu J and Ni Z 2021 Laser Photonics Rev. 15 2000587 [3] Wang S, Wang J, Zhao W, Giustiniano F, Chu L, Verzhbitskiy I, Yong J Z and Eda G 2017 Nano Lett. 17 5156 [4] Bai Y, Wang Y and Meng S 2024 Phys. Rev. Lett. 133 046903 [5] Dai Z, Lian C, Lafuente-Bartolome J and Giustino F 2024 Phys. Rev. Lett. 132 036902 [6] Yao J, Sheng H, Zhang R, Pang R, Zhou J J, Wu Q, Weng H, Dai X, Fang Z and Wang Z 2024 Chin. Phys. Lett. 41 097101 [7] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601 [8] Cudazzo P, Tokatly I V and Rubio A 2011 Phys. Rev. B 84 085406 [9] Lian C, Zhang S J, Hu S Q, GuanMX and Meng S 2020 Nat. Commun. 11 43 [10] Yuan L and Huang L 2015 Nanoscale 7 7402 [11] Mueller T and Malic E 2018 npj 2D Mater. Appl. 2 29 [12] Chan Y, Haber J B, Naik M H, Neaton J B, Qiu D Y, da Jornada F H and Louie S G 2023 Nano Lett. 23 3971 [13] Lin Y, Chan Y, Lee W, Lu L S, Li Z, Chang W H, Shin C K, Kaindl R A and Louie S G 2022 Phys. Rev. B 106 L081117 [14] Sui X, Wang H, Liang C, Zhang Q, Bo H, Wu K, Zhu Z, Gong Y, Yue S, Chen H, Shang Q, Mi Y, Gao P, Zhang Y, Meng S and Liu X 2022 Nano Lett. 22 5651 [15] Liu X B, Hu S Q, Chen D, Guan M, Chen Q and Meng S 2022 Nano Lett. 22 4800 [16] Qiu D Y, Da Jornada F H and Louie S G 2013 Phys. Rev. Lett. 111 216805 [17] Qiu D Y, Da Jornada F H and Louie S G 2016 Phys. Rev. B 93 235435 [18] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802 [19] Dong S, Chen Y, Qu H, Lou W and Chang K 2025 Phys. Rev. Lett. 134 066602 [20] Garcia C, Radha S K, Acharya S and Lambrecht W R L 2024 Phys. Rev. B 110 085102 [21] Gorelov V, Reining L, Feneberg M, Goldhahn R, Schleife A, Lambrecht W R L and Gatti M 2022 npj Comput. Mater. 8 94 [22] Dai X, Qin F, Qiu C, Zhou L, Huang J, Cheng F, Bi X, Zhang C, Li Z, Tang M, Wu S, Zhao X, Lu Y, Gou H and Yuan H 2023 Nano Res. 16 1107 [23] Li Z, Huang J, Zhou L, Xu Z, Qin F, Chen P, Sun X, Liu G, Sui C, Qiu C, Lu Y, Gou H, Xi X, Ideue T, Tang P, Iwasa Y and Yuan H 2023 Nat. Commun. 14 5568 [24] Cheng F, Huang J, Qin F, Zhou L, Dai X, Bi X, Zhang C, Li Z, Tang M, Qiu C, Lu Y, Gou H and Yuan H 2022 Nano Res. 15 7378 [25] Zhou L, Huang J, Windgaetter L, Ong C S, Zhao X, Zhang C, Tang M, Li Z, Qiu C, Latini S, Lu F, Wu D, Gou H, Wee A T S, Hosono H, Louie S G, Tang P, Rubio A and Yuan H 2022 Nat. Mater. 21 773 [26] Matta S K, Zhang C, Jiao Y, O’Mullane A and Du A 2018 Nanoscale 10 6369 [27] Zhou J, Cai T Y and Ju S 2020 Phys. Rev. Res. 2 033288 [28] Zhou R, Sui L, Liu X, Liu K, Guo D, Zhao W, Song S, Lv C, Chen S, Jiang T, Cheng Z, Meng S and Shan C 2023 Nat. Commun. 14 1310 [29] Caruso F, Filip M R and Giustino F 2015 Phys. Rev. B 92 125134 [30] Huang T A, Zacharias M, Lewis D K, Giustino F and Sharifzadeh S 2021 J. Phys. Chem. Lett. 12 3802 [31] Xia F,Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photonics 8 899 [32] Yang L, Deslippe J, Park C H, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 186802 [33] Gomes L C, Trevisanutto P E, Carvalho A, Rodin A S and Castro Neto A H 2016 Phys. Rev. B 94 155428 [34] Ying X and Law K T 2024 arXiv:2407.00325 [cond-mat.mes-hall] [35] Rozzi C A, Varsano D, Marini A, Gross E K U and Rubio A 2006 Phys. Rev. B 73 205119 [36] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [38] Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36 [39] Iraola M, Mañes J L, Bradlyn B, Horton M K, Neupert T, Vergniory M G and Tsirkin S S 2022 Comput. Phys. Commun. 272 108226 [40] Sangalli D, Ferretti A, Miranda H, et al. 2019 J. Phys.: Condens. Matter 31 325902 [41] Marini A, Hogan C, Grüning M and Varsano D 2009 Comp. Phys. Comm. 104 180 [42] Wolf D, Keblinski P, Phillpot S R and Eggebrecht J 1999 J. Chem. Phys. 110 8254 [43] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927 [44] Chen Y, LouWK, YangWand Chang K 2025 New J. Phys. 27 023026 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|