Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097803    DOI: 10.1088/1674-1056/ade668
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices Prev   Next  

Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer

Chenxi Yang(杨晨曦)1, Lanyu Huang(黄岚雨)2, Yujie Li(李宇杰)1, Xiaokun Zhai(翟晓坤)1,†, Qiang Ai(艾强)1, Chunzi Xing(邢淳梓)1, Xinmiao Yang(杨新苗)1, Yazhou Gu(谷亚舟)3, Peigang Li(李培刚)4, Zhitong Li(李志曈)3, Haitao Dai(戴海涛)1, Liefeng Feng(冯列峰)1, Linsheng Liu(刘林生)5, Xiao Wang(王笑)2, and Tingge Gao(高廷阁)1,‡
1 Department of Physics, School of Science, Tianjin University, Tianjin 300072, China;
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
3 State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
4 School of Integrated Circuits & State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
5 School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin 541004, China
Abstract  Two-dimensional (2D) transition-metal dichalcogenide (TMD) monolayers based on become a promising platform to study photonics and optoelectronics. Electrically controlling the excitonic properties of TMD monolayers can be realized in different devices. In this work, we realize the strong coupling between the excitons of WS$_2$ monolayers and a photonic cavity mode in a liquid crystal microcavity. The formed exciton polaritons can be electrically tuned by applying voltage to the microcavity. Our work offers a way to study exciton-polariton manipulation based on TMD monolayers by electrical methods at room temperature.
Keywords:  transition-metal dichalcogenide (TMD)      microcavity      liquid crystal      exciton polariton  
Received:  29 April 2025      Revised:  08 June 2025      Accepted manuscript online:  20 June 2025
PACS:  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.55.-m (Photoluminescence, properties and materials)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  42.70.Df (Liquid crystals)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174285 and 12474315). H. Dai also acknowledges support from the National Natural Science Foundation of China (Grant No. 62375200). X. Zhai acknowledges support from the National Natural Science Foundation of China (Grant No. 12504372) and the China Postdoctoral Science Foundation–Tianjin Joint Support Program (Grant No. 2025T003TJ). Z. Li acknowledges support from the National Natural Science Foundation of China (Grant No. 12404424).
Corresponding Authors:  Xiaokun Zhai, Tingge Gao     E-mail:  xiaokunzhai@tju.edu.cn;tinggegao@tju.edu.cn

Cite this article: 

Chenxi Yang(杨晨曦), Lanyu Huang(黄岚雨), Yujie Li(李宇杰), Xiaokun Zhai(翟晓坤), Qiang Ai(艾强), Chunzi Xing(邢淳梓), Xinmiao Yang(杨新苗), Yazhou Gu(谷亚舟), Peigang Li(李培刚), Zhitong Li(李志曈), Haitao Dai(戴海涛), Liefeng Feng(冯列峰), Linsheng Liu(刘林生), Xiao Wang(王笑), and Tingge Gao(高廷阁) Electrically tuning exciton polaritons in a liquid crystal microcavity based on WS2 monolayer 2025 Chin. Phys. B 34 097803

[1] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
[4] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[6] Ye Z, Cao T, O’Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[7] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[8] Berkelbach T C, Hybertsen M S and Reichman D R 2013 Phys. Rev. B 88 045318
[9] Lagerwall J P and Scalia G 2012 Curr. Appl. Phys. 12 1387
[10] Shang J, Zhang X, Zhang V L, Zhang X and Yu T 2023 ACS Photonics 10 2064
[11] Coker K, Zheng C, Arhin J R, Agyekum K O B O and Zhang W 2024 Chin. Phys. B 33 037102
[12] Liu X, Galfsky T, Sun Z, Xia F, Lin E C, Lee Y H, Kéna-Cohen S and Menon V M 2015 Nat. Photonics 9 30
[13] Amani M, Lien D H, Kiriya D, Xiao J, Azcatl A, Noh J, Madhvapathy S R, Addou R, Kc S, Dubey M, Cho K, Wallace R M, Lee S C, He J H, Ager J W, Zhang X, Yablonovitch E and Javey A 2015 Science 350 1065
[14] Zhao J, Su R, Fieramosca A, Zhao W, Du W, Liu X, Diederichs C, Sanvitto D, Liew T C H and Xiong Q 2021 Nano Lett. 21 3331
[15] Hao K, Moody G, Wu F, Dass C K, Xu L, Chen C H, Sun L, Li M Y, Li L J, MacDonald A H, Li X and Li J 2016 Nat. Phys. 12 677
[16] Amani M, Taheri P, Addou R, Ahn G H, Kiriya D, Lien D H, Ager J W, Wallace R M and Javey A 2016 Nano Lett. 16 2786
[17] Wang Y, Zhai X, Feng L and Gao T 2022 Appl. Phys. Express 15 022005
[18] Zhan T, Shi X, Dai Y, Liu X and Zi J 2013 Adv. Mater. 24 2320
[19] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J and Lin T W 2012 Adv. Mater. 24 2320
[20] Ling X, Lee Y H, Lin Y, Fang W, Yu L, Dresselhaus M S and Kong J 2014 Nano Lett. 14 464
[21] Lan F, Yang R, Sun K, Wang Z, Zhang Y, Wang Y and Cheng H 2022 Vacuum 201 111091
[22] Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[23] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[24] Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F and Charlier J C 2013 Sci. Rep. 3 1755
[25] Savona V, Hradil Z, Quattropani A and Schwendimann P 1994 Phys. Rev. B 49 8774
[26] Malpuech G, Kavokin A, Di Carlo A, Baumberg J J, Compagnone F, Lugli P and Zamfirescu M 2002 Phys. Status Solidi A 190 181
[27] Chakraborty C, Kinnischtzke L, Goodfellow K M, Beams R and Vamivakas A N 2015 Nat. Nanotechnol. 10 507
[28] Fernandez H A, Withers F, Russo S and Barnes W L 2019 Appl. Phys. Lett. 115 071101
[29] Rechcińska K, Król M, Mazur R, Morawiak P, Mirek R, Łempicka K, Bardyszewski W, Matuszewski M, Kula P, Piecek W, Szczytko J and Pacuski W 2019 Science 366 727
[30] Choi S W, Yamamoto S I, Iwata T and Kikuchi H 2009 J. Phys. D: Appl. Phys. 42 112002
[31] Zhai X, Ma X, Gao Y, Xing C, Gao M, Dai H, Wang X, Pan A, Schumacher S and Gao T 2023 Phys. Rev. Lett. 131 136901
[32] Flatten L C, He Z, Coles D M, Trichet A A P, Powell AW, Taylor R A, Warner J H and Smith J M 2016 Sci. Rep. 6 33134
[33] Gogna R, Zhang L, Wang Z and Deng H 2019 Opt. Express 27 22700
[34] Sun Z, Gu J, Ghazaryan A, Shotan Z, Considine C R, Dollar M, Chakraborty B, Liu X, Ghaemi P and Kéna-Cohen S 2017 Nat. Photonics 11 491
[1] Room-temperature exciton-polariton condensation in pressed perovskite microcavities
Tianyin Zhu(朱天寅), Zelei Chen(陈泽磊), Xiaoyu Wang(王小宇), Zhongmin Huang(黄钟民), Haibin Zhao(赵海斌), and Jun Wang(王俊). Chin. Phys. B, 2025, 34(9): 094202.
[2] Dielectric anisotropy in liquid crystal mixtures with nematic and smectic phases
Xing-Zhou Tang(汤星舟), Jia-Yao Ye(叶家耀), Zi-Ye Wang(王子烨), Hao-Yi Jiang(姜皓译), Xiao-Hu Shang(尚小虎), Zhao-Yan Yang(杨朝雁), and Bing-Xiang Li(李炳祥). Chin. Phys. B, 2024, 33(8): 087702.
[3] A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator
Wenjie Fan(范文杰), Wenyao Liu(刘文耀), Ziwen Pan(潘梓文), Rong Wang(王蓉), Lai Liu(刘来), Enbo Xing(邢恩博), Yanru Zhou(周彦汝), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(5): 054206.
[4] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[5] Chiral polaritons in semiconductor perovskite metasurface enhanced by bound states in the continuum
Dun Wang(汪顿), Albert Y. Xiong, Julia Q. Zhang, Zengde She(佘增德), Xiaofeng Kang(康晓峰), Ying Zhu(朱莹), Sanjib Ghosh, and Qihua Xiong(熊启华). Chin. Phys. B, 2024, 33(12): 128103.
[6] Liquid crystal droplets formation and stabilization during phase transition process
Xia Meng(孟霞), Jiayao Ye(叶家耀), Ao Li(李澳), Xudong Zhu(朱徐栋), Zhaoyan Yang(杨朝雁), Lei Wang(王磊), Bingxiang Li(李炳祥), and Yanqing Lu(陆延青). Chin. Phys. B, 2024, 33(11): 116101.
[7] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[8] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[9] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[10] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[11] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[12] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[13] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[14] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[15] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
No Suggested Reading articles found!