|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| SPECIAL TOPIC — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Room-temperature exciton-polariton condensation in pressed perovskite microcavities |
| Tianyin Zhu(朱天寅)1, Zelei Chen(陈泽磊)1, Xiaoyu Wang(王小宇)1, Zhongmin Huang(黄钟民)1, Haibin Zhao(赵海斌)1,2, and Jun Wang(王俊)1,2,† |
1 Key Laboratory of Micro & Nano Photonic Structures, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China; 2 State Key Laboratory of Photovoltaic Science and Technology, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Fudan University, Shanghai 200433, China |
|
|
|
|
Abstract Microcavity exciton-polaritons, formed by strong light-matter coupling, are essential for realizing Bose-Einstein condensation and low-threshold lasing. Such polaritonic lasing and condensation have been demonstrated in III-V semiconductors at liquid helium temperatures. However, the complex fabrication of these microcavities and operating temperatures limit their room-temperature practical application. Here, we experimentally realize room-temperature exciton-polariton condensation and polaritonic lasing in a CsPbBr$_{3}$ perovskite planar microcavity fabricated by the pressing process. Angle-resolved photoluminescence spectra demonstrate the strong light-matter coupling and the formation of exciton-polaritons in such a pressed microcavity. Above the critical threshold, mass polaritons accumulating at the bottom of dispersion lead to a narrow emission linewidth and pronounced blueshift, further reinforcing the Bose-Einstein condensation and polaritonic lasing in this system. Our results offer a feasible and effective approach to investigate exciton-polariton condensation and polariton lasing at room temperature.
|
Received: 07 April 2025
Revised: 26 May 2025
Accepted manuscript online: 27 May 2025
|
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
| |
71.36.+c
|
(Polaritons (including photon-phonon and photon-magnon interactions))
|
| |
42.55.Sa
|
(Microcavity and microdisk lasers)
|
|
| Fund: The authors gratefully acknowledge the support from the National Natural Science Foundation (Grant No. 12204111), the National Key Research and Development Program of China (Grant No. 2023YFA1407100), and Shanghai Pilot Program for Basic Research (Grant No. 22JC1403202). |
Corresponding Authors:
Jun Wang
E-mail: wangjunfd@fudan.edu.cn
|
Cite this article:
Tianyin Zhu(朱天寅), Zelei Chen(陈泽磊), Xiaoyu Wang(王小宇), Zhongmin Huang(黄钟民), Haibin Zhao(赵海斌), and Jun Wang(王俊) Room-temperature exciton-polariton condensation in pressed perovskite microcavities 2025 Chin. Phys. B 34 094202
|
[1] Kavokin A 2010 Phys. Status Solidi B Basic Res. 247 1898 [2] Sanvitto D, Pigeon S, Amo A, Ballarini D, De Giorgi M, Carusotto I, Hivet R, Pisanello F, Sala V G, Guimaraes P S S, Houdré R, Giacobino E, Ciuti C, Bramati A and Gigli G 2011 Nat. Photonics 5 610 [3] Dominici L, Carretero-González R, Gianfrate A, Cuevas-Maraver J, Rodrigues A S, Frantzeskakis D J, Lerario G, Ballarini D, De Giorgi M, Gigli G, Kevrekidis P G and Sanvitto D 2018 Nat. Commun. 9 1467 [4] Wang J, Peng Y, Xu H, Feng J, Huang Y, Wu J, Liew T C H and Xiong Q 2022 Natl. Sci. Rev. 10 nwac096 [5] Li Y, Ma X, Zhai X, Gao M, Dai H, Schumacher S and Gao T 2022 Nat. Commun. 13 3785 [6] Septembre I, Foudjo I, Develay V, Guillet T, Bouchoule S, Zúñiga- Pérez J, Solnyshkov D D and Malpuech G 2024 Phys. Rev. B 109 205302 [7] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M J, Marchetti F M, Szymańska M H, André R, Staehli J L, Savona V, Littlewood P B, Deveaud B and Dang L S 2006 Nature 443 409 [8] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489 [9] Su R, Fieramosca A, Zhang Q, Nguyen H S, Deleporte E, Chen Z, Sanvitto D, Liew T C H and Xiong Q 2021 Nat. Mater. 20 1315 [10] Bajoni D, Senellart P, Wertz E, Sagnes I, Miard A, Lemaître A and Bloch J 2008 Phys. Rev. Lett. 100 047401 [11] Li F, Orosz L, Kamoun O, Bouchoule S, Brimont C, Disseix P, Guillet T, Lafosse X, Leroux M, Leymarie J, Mexis M, Mihailovic M, Patriarche G, Réveret F, Solnyshkov D, Zuniga-Perez J and Malpuech G 2013 Phys. Rev. Lett. 110 196406 [12] Guillet T and Brimont C 2016 C. R. Phys. 17 946 [13] Zhao J, Su R, Fieramosca A, Zhao W, Du W, Liu X, Diederichs C, Sanvitto D, Liew T C H and Xiong Q 2021 Nano Lett. 21 3331 [14] Su R, Wang J, Zhao J, Xing J, Zhao W, Diederichs C, Liew T C H and Xiong Q 2018 Sci. Adv. 4 eaau0244 [15] Zhao B, Shen D, Zhang Z, Lu P, Hossain M, Li J, Li B and Duan X 2021 Adv. Funct. Mater. 31 2105132 [16] Elangovan N K, Kannadasan R, Beenarani B B, Alsharif M H, Kim M -K and Hasan Inamul Z 2024 Energy Rep. 11 1171 [17] Monama G R, Ramohlola K E, Iwuoha E I and Modibane K D 2022 Results Chem. 4 100321 [18] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X,Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692 [19] Li J, Du P, Guo Q, Sun L, Shen Z, Zhu J, Dong C, Wang L, Zhang X, Li L, Yang C, Pan J, Liu Z, Xia B, Xiao Z, Du J, Song B, Luo J and Tang J 2023 Nat. Photonics 17 435 [20] Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q and Wei Z 2018 Nature 562 245 [21] Han Q, Wang J, Tian S, Hu S, Wu X, Bai R, Zhao H, Zhang D W, Sun Q and Ji L 2024 Nat. Commun. 15 1536 [22] Song J, Ghosh S, Deng X, Li C, Shang Q, Liu X, Wang Y, Gao X, Yang W, Wang X, Zhao Q, Shi K, Gao P, Xing G, Xiong Q and Zhang Q 2025 Sci. Adv. 11 eadr1652 [23] Zou C, Cao X, Wang Z, Yang Y, Lian Y, Zhao B and Di D 2025 Sci. Adv. 11 eadr8826 [24] Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z and Xiong Q 2017 Nano Lett. 17 3982 [25] Zhang Q, Su R, Liu X, Xing J, Sum T C and Xiong Q 2016 Adv. Funct. Mater. 26 6238 [26] Wang D, Albert Y X, Zhang J Q, She Z D, Kang X F, Zhu Y, Sanjib G and Xiong Q 2024 Chin. Phys. B 33 128103 [27] Ardizzone V, Riminucci F, Zanotti S, Gianfrate A, Efthymiou-Tsironi M, Suàrez-Forero D G, Todisco F, De Giorgi M, Trypogeorgos D, Gigli G, Baldwin K, Pfeiffer L, Ballarini D, Nguyen H S, Gerace D and Sanvitto D 2022 Nature 605 447 [28] Wang J, Su R, Xing J, Bao D, Diederichs C, Liu S, Liew T C H, Chen Z and Xiong Q 2018 ACS Nano 12 8382 [29] Wang J, Da P, Zhang Z, Luo S, Liao L, Sun Z, Shen X, Wu S, Zheng G and Chen Z 2018 Nanoscale 10 10371 [30] Vadia S, Scherzer J, Thierschmann H, Schäfermeier C, Dal Savio C, Taniguchi T, Watanabe K, Hunger D, Karraï K and Högele A 2021 PRX Quantum 2 040318 [31] Dong W, Dai Z, Liu L and Zhang Z 2024 Adv. Mater. 36 2303014 [32] Coker K, Zheng C, Arhin J R, Agyekum K O B O and Zhang W 2024 Chin. Phys. B 33 037102 [33] Kappei L, Szczytko J, Morier-Genoud F and Deveaud B 2005 Phys. Rev. Lett. 94 147403 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|